First PM aircraft exhaust measurements using single particle mass spectrometry.
The majority of the investigated particles contained one or more metallic compound.
The metals and the soot were found to be internally mixed in the emitted particles.
Potential sources of the detected metals (fuel, oil and engine wear) were discussed.
http://www.overcast-the-movie.com - Matthias Hancke, Schweiz
PRESSEMITTEILUNG
ETH-‐Studie weist Aluminium und weitere Stoffe in Flugzeugabgasen nach
Die Bundesämter für Umwelt und Zivilluftfahrt stufen die Zunahme von Kondensstreifen der Flugzeuge bis anhin als nicht besorgniserregend ein. Die Kondensstreifen bestünden aus Wasserdampf, Eis und Russ und seien im Bereich des Normalen und Natürlichen, im jeweiligen Verhältnis zu den Feuchtigkeits-‐ und Druckverhältnissen, heisst es etwa in behördlichen Antwortschreiben an besorgte BürgerInnen. Nun hat die ETH Zürich eine Studie der Abgase von Flugzeugen durchgeführt. Die Resultate sind beunruhigend.
Die ETH Zürich hat in den Russpartikeln der Abgase von drei Flugzeugtypen erstaunliches festgestellt. Es wurden insgesamt 16 Metalle nachgewiesen 1, die ein Risiko für die Gesundheit darstellen, wenn sie eingeatmet werden. Aluminium zum Beispiel stehe gemäss neuesten Forschungen im Verdacht, die Zunahme der Alzheimer-‐Erkrankungen zu begünstigen. Aluminium könne die Blut-‐Hirn-‐Schranke durchdringen und so Schädigungen im Gehirn verursachen, sowie neurologische Krankheiten aus-‐ lösen 2. Flugzeugabgase beeinflussen aber auch unser Klima: "Russpartikel, welche durch unvoll-‐ ständige Verbrennung von Kohlenwasserstoffbrennstoffen entstehen, beeinflussen direkt das globale Strahlungsgleichgewicht der Erde aufgrund ihrer ausgeprägten Eigenschaft, Licht zu absorbieren, und indirekt durch ihre Interaktion mit Wolken, was in der Folge das Klima beeinflusst." 3.
Durch den Flugverkehr verursachte Kondensstreifen, die sich zu Zirruswolken ausbreiten, verfärben den Himmel vermehrt weisslich und hätten einen grösseren Einfluss auf das Klima als bisher angenommen, so Charles Long vom Erdsystem Forschungsinstitut der NOAA. Er sagte sogar, dass die künstliche Wolkenbildung durch den Flugverkehr bereits eine Form von ungewolltem Geoengineering sei 4. Geoengineering wird als die absichtliche Veränderung des Klimas bezeichnet. Wie etwas ungewollt absichtlich erfolgen kann, sei hier dahingestellt.
Fakt ist, dass die US-‐ sowie die britische Regierung bereits 2009 begonnen haben, Richtlinien für die Anwendung von Geoengineering zu diskutieren und auszuarbeiten 5. Die wahrscheinlichste und billigste Methode mittels Geoengineering die Klimaerwärmung zu bekämpfen liegt momentan in der Ausbringung von Aerosolen in die Atmosphäre. Sulfate oder laut David Keith auch Aluminium und Barium sowie Titan sollen zu diesem Zweck aus Flugzeugen grossflächig versprüht werden. Weltweit glauben seit über 10 Jahren immer mehr Menschen, dass solche Klimaexperimente bereits stattfinden; auch in der Schweiz. Meteo Schweiz, Greenpeace, Behörden und auch die Medien haben bisher abgewinkt und wollten sich dem Thema nicht näher annehmen. Die Messresultate der ETH machen aber klar, dass Handlungsbedarf besteht.
http://e-‐collection.library.ethz.ch/eserv/eth:48927/eth-‐48927-‐01.pdf, V ff.
geoengineering-‐180957561/?no-‐ist
http://www.publications.parliament.uk/pa/cm200910/cmselect/cmsctech/221/221.pdf
Bedenkt man, dass sich fast 37.5 Mio. Flugzeuge jährlich (gemäss ATAG Air Transport Action Group, (2014) in der Luft befinden, sollte abgeklärt werden, welchen Einfluss der Ausstoss dieser Schadstoffe auf unser Ökosystem hat. Zu berücksichtigen ist ebenfalls, dass diese Stoffe mit dem Regen in die Nahrungskette gelangen und von Organismen aufgenommen werden. Im Sinne des Klimaschutzes und zum Wohle der Umwelt und unserer Gesundheit müssten nun schnell Vorkehrungen getroffen werden, um diese Metallbelastung aus dem Luftraum zu verbannen sowie die Flugzeugabgase endlich zu regulieren.
Matthias Hancke, ein Schweizer Dokumentarfilmer und Herausgeber des preisgekrönten Films Overcast (dt. Bewölkt) hat sich dem Phänomen der künstlichen Bewölkung durch Kondensstreifen jahrelang gewidmet und seine Recherchen in seinem Film zusammengefasst. In diesem wird unter anderem auch das Interview mit Professorin Ulrike Lohmann von der ETHZ über die Studie gezeigt 6.
http://www.overcast-the-movie.com - Matthias Hancke, Schweiz
YouTube: https://www.youtube.com/watch?v=ehW86w8FIkc
http://www.overcast-the-movie.com Matthias Hancke, Schweiz
A. Worringen et al.: Single-particle characterization of ice-nucleating particles and ice particle residuals
4 Discussion
4.1 Composition of INP/IPR
4.1.1 Which particle classes can be regarded as INP/IPR?
Silicates were identified as common INP/IPR in laboratory experiments as well as in field experiments (Hoose and Möhler, 2012; Murray et al., 2012). Also, in our field campaign silicates are the most abundant INP/IPR components. Ca-rich particles – e.g., carbonates like calcite – are not frequently regarded as INPs (e.g., Murray et al., 2012). However, according to laboratory experiments calcite can act as an INP (Zimmermann et al., 2008). Therefore, the Ca-rich particles are regarded as INP/IPR. Metal oxides are also commonly observed as IPR in field experiments (Chen et al., 1998; De- Mott et al., 2003). Similar to our study, Fe-rich particles are usually the main group within the metal oxides. In addition, Al-, Ti-, Zn-, Cr-, and Ca-rich particles were found in the present investigation and by Chen et al. (1998).
Based on field experiments and laboratory studies, Pbbearing particles are in general regarded as good ice nuclei (for a detailed discussion refer to Cziczo et al., 2009b). In the present study, lead is found in two forms: as Pb-rich inclusions in other particles (major abundance) and as homogeneous Pb-rich particles (minor abundance). The minor fraction of homogeneous Pb-rich particles is regarded as an instrumental artifact (see discussion above), but due to its low abundance of less than 10% (equaling about 10 particles), it is neglected from further discussion.
The ice nucleation ability of soot and carbonaceous particles is discussed controversially in the previous literature. While an enrichment of black carbon in IPRs was observed in field experiments (Cozic et al., 2008), there are also other findings where organic-rich particles preferentially remain unfrozen (Cziczo et al., 2004). It has to be mentioned, however, that carbon-rich particles are often named ambiguously depending on the technique used for analysis (see also Murray et al., 2012; Petzold et al., 2013). Thus, discrepancies may arise from the fact that different types of carbonaceous material (e.g., nanocrystalline graphite, organic material) are compared. Laboratory experiments show that the ice-forming activity of soot is influenced by size, surface area and the concentration of the surface chemical groups that can form hydrogen bonds with water molecules (Gorbunov et al., 2001; Koehler et al., 2009). According to the latter, the iceforming activity of soot is close to that of metal oxides. In summary, we conclude that soot and carbonaceous particles observed in our samples were active as INP.
Also, for secondary aerosol particles the ice nucleation ability is discussed controversially. As in the case of soot and carbonaceous matter, secondary aerosol particles are found in field measurements of INP (Abbatt et al., 2006; Prenni et al., 2009b) and in laboratory experiments under cirrus cloud conditions (Hoose and Möhler, 2012). In contrast, Cziczo et. (2004) report from a field study that organic-rich particles (internally mixed particles of sulfates and organic species) preferentially remain unfrozen. Based on our data, where secondary material is present in many INP/IPR samples, we consider these particles to be INPs/IPRs.
Sea salt as INP/IPR was described for field studies by Cziczo and Froyd (2014) and Targino et al. (2006). While crystalline salts were found in a laboratory study to be able to act as INPs under upper-tropospheric conditions (Zuberi et al., 2001), there has been a need of clarifying the process by which a hygroscopic and soluble material should act as IN. However, recently, Wise et al. (2012) explained this behavior by fractional crystallization of the solute component under decreasing temperatures. Based on these findings, we consider sea salt as potential sampling artifacts. Similar to sea salt, no agreement exists on the ice nucleation ability of sulfate particles. Sulfates may act as INP in cirrus clouds in the upper troposphere and lower stratosphere, both in immersion and deposition modes (Abbatt et al., 2006, and references therein; Hoose and Möhler, 2012). Sulfates acting as INP are found in a field study in increasing abundance with decreasing temperature under cirrus conditions (56 to 39 C; Twohy and Poellot, 2005) but usually not in the warmer mixed-phase clouds as encountered during our field experiment. Considering the usually high relative abundance of sulfates in the total aerosol (Ebert et al., 2011), we cannot exclude the possibility that sulfates are an
artifact of the INP/IPR discrimination techniques not having perfect (i.e., 100 %) discrimination efficiency. Thus, we consider sulfate particles as potential sampling artifacts. Similar considerations apply to the observed droplets. As explained in the methods section, contamination artifact particles were removed from the further analysis, while potential sampling artifacts are included in the data.
4.1.2 Relative abundance of particle classes among INP/IPR
If all INP/IPR particles of the three sampling methods are summed up, the following averaged INP/IPR composition of the whole field campaign is obtained: 52% terrigenous particles (38% silicates, 9% metal oxides, 5% Ca-rich particles), 14% C-rich particles (12% carbonaceous particles, 2% soot), 1% secondary particles, 11% sulfate, 11% droplets, 4% sea salt, 5% Pb-bearing particles, and 2% other particles. A compilation of INP/IPR composition encountered in mixed-phase clouds is shown in Table 4. In general, the results of the present study are in good agreement with the findings of previous work. Silicates are the most abundant component of INP/IPR with a relative number abundance varying between 40 and 71 %. The second most abundant component is carbonaceous material (16–43 %), followed by salts (sea salt, sulfates, droplets) with a relative number abundance between 5 and 27 %. The high abundance of coated particles observed in the present study is in good agreement with Targino et al. (2006), who observed sulfur coatings for all groups indicating ageing and in-cloud processing.
An overview of IPR compositions found during 13 field campaigns of cirrus clouds is given by Cziczo and Froyd (2014). Also, here the main particle types are mineral dust, metals, BC/soot, sea salt, sulfate, and biomass burning. A relatively high abundance of Pb-bearing particles, in particular internally mixed ones, seems to be characteristic for IPR at the JFJ station. They were found in previous work (Cziczo et al., 2009b; Ebert et al., 2011) and during the present field campaign. However, the fraction of Pbbearing particles in the whole INUIT campaign is 1% for FINCHCIN-PCVI, and 10% for Ice-CVI. In contrast, a higher fraction of up to 20% was found during CLACE 5. As helicopter flights – where Pb-rich particles might be emitted due to leaded fuel usage – around the JFJ station were more frequent during CLACE 5 than during the present field campaign, the decrease in the abundance of Pb-bearing particles indicates a considerable contribution of local emissions to the INP formation at the JFJ station.
Feldspar minerals and in particular K-feldspars (e.g., microcline) were discussed as efficient INPs (Atkinson et al., 2013; Yakobi-Hancock et al., 2013). Despite the fact that we did not determine the mineralogical phase of the silicate particles, we can show by SEM-EDX that they have low potassium contents (K = Si atomic ratio < 0.1). Thus, it is concluded that K-feldspar particles do not occur as INP/IPR at JFJ in winter. Ca-rich particles appear in the supermicron fraction with a number abundance ratio of 0.1–0.33 relative to silicates (depending on method and sample), which is in the range reported for natural mineral dust (Kandler et al., 2007, 2009, 2011; Coz et al., 2009). Thus, Ca-rich particles can be considered as similarly effective IN as silicates.
4.2 Significance of mixing state and particle class for ice nucleation
A significant fraction of the INPs/IPRs occurs as internal mixtures (Table 3). This fraction is similar to previous literature data. Chen et al. (1998) reported that a fraction of 25% of the INPs were a mixture of sulfates and elements indicative of insoluble particles. The same relative abundance of mixtures of metal oxides/dust with either carbonaceous components or salts/sulfates was reported by Prenni et al. (2009a). For the JFJ station, a slightly lower fraction of internally mixed particles was found during the CLACE 5/6 campaigns: 9–15% by Ebert et al. (2011) and up to 15% by Kamphus et al. (2010).
Especially notable is the observed difference between silicates and Ca-rich particles. While silicates are usually internally mixed, the Ca-rich particles do not have a detectable coating. This may indicate that for silicates a coating is less effective in reducing their IN ability than for Ca-rich particles, pointing to a more pronounced processing (e.g., destruction of the surface structure) of the latter. However, the influence of coatings on the ice nucleation ability of silicates is discussed controversially. In field experiments, coatings on silicates and metal oxides are commonly observed (Chen et al., 1998; Targino et al., 2006; Prenni et al., 2009a). In laboratory experiments, conflicting results are obtained. While Cziczo et al. (2009a) as well as Hoose and Möhler (2012) reported a deactivation of the ice nuclei due to coatings, Sullivan et al. (2010) found that coatings do not always effect the ice nucleation ability. In contrast, Archuleta et al. (2005) and Zuberi et al. (2002) discuss mineral dust as an efficient nucleus for ice in NH4SO4–H2O aerosols and demonstrated that mineral particles coated with sulfate increase the freezing temperature up to 10K compared to pure sulfate solutions. In addition, Richardson et al. (2007) reported that soluble coatings favor condensation-freezing nucleation and inhibit nucleation by vapor deposition. But they also mention, that coating itself may act either to increase or decrease ice nucleation efficiency independently of the nucleation mechanism.
Bei den Luft-Messungen werden sehr wohl Metalloxide und andere Geoengineering SRM-Aussaat-Materialien gefunden. Nur wird das geheim gehalten. Diese gefundenen Substanzen in diesen Messungen stimmen völlig überein mit den möglichen SRM-Aussaat-Materialien für Stratosphärische Aerosol-Injektionen.
Das was wir in Jahrelanger Recherchearbeit heraus finden, ist nur die Spitze des Eisberges. Das ist ein zweites Manhattan-Projekt, was hier durchgeführt wird.