Sensitivity of stratospheric geoengineering with black carbon to aerosol size and altitude of injection


Ben Kravitz, Alan Robock, Drew T. Shindell, Mark A. Miller


First published: 4.May 2012





[1] Simulations of stratospheric geoengineering with black carbon (BC) aerosols using a general circulation model with fixed sea surface temperatures show that the climate effects strongly depend on aerosol size and altitude of injection. 1 Tg BC a1 injected into the lower stratosphere would cause little surface cooling for large radii but a large amount of surface cooling for small radii and stratospheric warming of over 60C. With the exception of small particles, increasing the altitude of injection increases surface cooling and stratospheric warming. Stratospheric warming causes global ozone loss by up to 50% in the small radius case. The Antarctic shows less ozone loss due to reduction of polar stratospheric clouds, but strong circumpolar winds would enhance the Arctic ozone hole. Using diesel fuel to produce the aerosols is likely prohibitively expensive and infeasible. Although studying an absorbing aerosol is a useful counterpart to previous studies involving sulfate aerosols, black carbon geoengineering likely carries too many risks to make it a viable option for deployment.



Citation: Kravitz, B., A. Robock, D. T. Shindell, and M. A. Miller (2012), Sensitivity of stratospheric geoengineering with black carbon to aerosol size and altitude of injection, J. Geophys. Res., 117, D09203, doi:10.1029/2011JD017341.



1. Introduction


[2] Geoengineering with stratospheric sulfate aerosols has, in recent years, become a commonly discussed means of alleviating some of the potential negative consequences of anthropogenic climate change by backscattering a portion of sunlight to space [Crutzen, 2006]. Climate modeling research into this topic has a long history [Govindasamy and Caldeira, 2000; Rasch et al., 2008; Robock et al., 2008], and is ongoing, in particular in the form of the Geoengineering Model Intercomparison Project (GeoMIP), which provides a standardized suite of four experiments to be conducted by the different climate modeling groups in an attempt to ascertain the robust features of the climate impacts of stratospheric sulfate aerosol geoengineering [Kravitz et al., 2011].


[3] Despite these large research efforts, comparatively little attention has been paid to other choices of aerosol, probably because sulfate aerosols have the well understood natural analogue of large volcanic eruptions. Engineered particles, such as resonant scatterers or self-levitating particles, have been proposed, but the feasibility of using these aerosols has yet to be determined [Teller et al., 1997; Keith, 2010]. One possibility which has been suggested repeatedly but received little formal attention is black carbon aerosols [Teller et al., 1997, 2002; Lane et al., 2007; Crutzen, 2006]. This idea has analogues in the form of large fires [Robock, 1988, 1991; Fromm et al., 2010] and simulations of nuclear winter [Turco et al., 1983; Robock et al., 2007a, 2007b; Toon et al., 2007; Mills et al., 2008].


[4] The climate effects of black carbon aerosol geoengineering have the potential to be severe, mostly due to stratospheric heating [Ferraro et al., 2011]. In particular, as in nuclear winter simulations, one potential consequence is catastrophic ozone loss [Toon et al., 2007; Mills et al., 2008]. However, one advantage black carbon could have over sulfate aerosols is that less aerosol mass is needed, which could mediate the expected negative impacts. For example, more radiatively efficient particles means less aerosol mass would be required to achieve a desired level of surface cooling. Also, aerosols that stay in the atmosphere longer require a lower replenishment rate.


[5] These factors can largely be controlled by particle size and altitude of injection. Smaller particles have slower fall speeds and are more radiatively efficient, meaning less is needed, and the degree of solar absorption and consequent self-lofting is greater. Particles injected at higher altitudes have a longer distance to fall and are less susceptible to stratospheric removal processes, like midlatitude tropopause folds, and scavenging by deep convective clouds, although if the particles are self-lofting, as is the case for black carbon aerosols, this becomes less of an issue [Rohatschek, 1996;


Pueschel et al., 2000]. Ban-Weiss et al. [2012] already performed some work on sensitivity to altitude of injection, but they used prescribed aerosol layers, meaning their investigation did not analyze circulation patterns in as much detail as our study, nor could they explore the role of selflofting.


[6] Thus we have several motivations for our study. The first is to determine some of the expected radiative and climatic perturbations of stratospheric geoengineering with black carbon aerosols. The second is to determine the sensitivity of black carbon aerosol geoengineering to aerosol size and altitude of injection, including changes in circulation. A third task is an assessment of means by which this method of geoengineering might be done, the projected costs of doing so, and the emissions factors that might result.


[7] Our investigations are primarily radiative in nature. Although interactive chemistry is an important part of our simulations, specifically regarding the effects on ozone, our discussion of chemical effects is purposefully limited. A more detailed investigation of these effects with a coupled chemistry model would certainly be warranted. Moreover, certain aspects of chemical effects pertaining to black carbon aerosols, notably heterogeneous chemistry on the aerosol surfaces, are a large source of uncertainty, and as such, are poorly represented in the model [Nienow and Roberts, 2006]. The climate model we use (Section 2) is an excellent tool for investigating the questions contained in this paper, but more intricate processes require tools which are beyond the capacity of our study.



2. Experiment Design


[8] We conducted our simulations with GISS ModelE2, a general circulation model developed by NASA’s Goddard Institute for Space Studies (previous version: Schmidt et al. [2006]). The version of the model we used has horizontal resolution of 2 latitude by 2.5 longitude and 40 vertical layers extending up to 0.1 mb (80 km). We ran the model using full stratospheric chemistry, where ozone is both radiatively and chemically interactive with the climate. The model is able to reproduce realistic ozone values and chemical ozone depletion, and stratospheric ozone at middle and high latitudes is considerably more realistic in the new ModelE2 than that shown in Shindell et al. [2006]. Our background case was constant year 2000 conditions in the atmosphere, and both sea surface temperatures (SSTs) and sea ice were fixed at an average of year 1996–2005, prescribed by HadISST [Rayner et al., 2003]. Although using fixed SSTs will affect temperature and circulation patterns, it is a useful means of isolating stratospheric responses and is a standard method in the CCMVal simulations [SPARC CCMVal, 2010]. Each experiment ensemble has three members of ten-year simulations. The control ensemble was conducted with constant year 2000 conditions in which greenhouse gases, background aerosols, and other radiatively important features were held fixed.


[9] Treatment of black carbon aerosols in this model, specifically surface adsorption of organic compounds, is discussed in detail by Hansen et al. [2007]. Briefly, absorption calculated for external mixing is increased by a factor of two to account for internal mixing [Chylek et al., 1995], and black carbon and organic carbon particles are scaled so they match AERONET observations [Koch, 2001; Sato et al., 2003]. This factor of two was derived for tropospheric emissions, so we are uncertain of how reasonable an assumption this is for stratospheric conditions. Although our aerosol model has a fixed, prescribed size distribution and no microphysics, meaning a more sophisticated model is necessary to test this assumption, such a test would certainly be warranted in the future.


[10] All geoengineering experiments involved continuous injections of BC aerosols into three adjacent vertical model layers in the stratosphere, totaling 1 Tg per year. The aerosols were placed along the 0 longitude meridian between 10S and 10N. The injection altitude and initial particle radius were varied to determine the sensitivity of the climate effects to these parameters. To assess sensitivity of geoengineering to particle radius, we chose three aerosol dry radii: 0.03 mm, 0.08 mm, and 0.15 mm, which are particle sizes typical of black carbon aerosols [Rose et al., 2006]. The model hydrates these aerosols, and they hygroscopically grow according to formulas by Tang [1996]. However, at these sizes, growth is no more than 0.02–0.03 mm. We also tested two altitudes of injection: lower stratosphere (100–150 mb) and middle stratosphere (20–57 mb). The different experiments are summarized in Table 1.


[11] One experiment not listed in Table 1 is the combination of high altitude and small radius. The model failed to simulate this scenario, as 1 Tg a1 of black carbon aerosol injection caused excessive ozone loss and stratospheric heating. To ensure comparability of our experiments, we chose not to simulate this scenario with a smaller injection rate. 



3. Black Carbon Mass Loading and Deposition


[12] Atmospheric lifetime will affect the peak mass loading of the aerosols. Figure 1 shows globally averaged stratospheric BC aerosol mass for each of the five ensembles in Table 1. The large aerosol size in the LgR simulation results in a high fall rate, so only this ensemble has reached steady state by the end of the ten-year simulation. The highest mass loading in the figure is for ensemble HA, reaching a globally averaged mass loading of 7.7 106 kg BC m2 by year ten, or approximately 90% of its steady state value, based on a simple mass balance equation (Table 2).


[13] With the exception of ensemble SmR, the mass loadings of the simulations can be divided into two groups which depend on the altitude of injection, where aerosols injected at higher altitudes have a longer lifetime. According to the values in Table 2, the equilibrium mass burden in Tg BC and the e-folding lifetime in years (the same number, since the injection rate is 1 Tg BC a1) for the two groups are separated by more than a factor of two. Our simulations show that unless the particles are small, altitude is the dominant factor

in determining the steady state mass loading. LgR shows the lowest e-folding lifetime of all of the experiments, at 0.75 years, which is even lower than the 1 year e-folding lifetime for sulfate aerosols, both in terms of large tropical volcanic eruptions and tropical geoengineering with stratospheric SO2 injections [Stenchikov et al., 1998; Robock et al., 2008].


[14] Figure 2 shows spatially resolved black carbon mass burden in the stratosphere. The bulk of the aerosols stay near the altitude of injection, although self-lofting of the aerosols is readily apparent, with the model showing aerosol mass extending to the model top (80 km), which was also found by Mills et al. [2008] in their nuclear winter simulations. Although the steady state atmosphere loading amounts for SmR and HA are similar (3.77 and 4.26 Tg BC, respectively), the peak values in Figure 2 for HA are twice those of SmR. The range of altitudes covered by the two ensembles is similar, implying the aerosols in SmR are more evenly distributed vertically than in HA. In the Def experiment, particles generally do not reach the mesosphere. The only difference between this experiment and experiment HA is the altitude of injection, implying the rate of stratospheric removal is higher for experiment Def. Experiment LgR shows little excursion of the aerosols from the altitudes into which they are injected, and the amount of aerosols in the stratosphere is lower than for all other experiments.


[15] Eventually, the aerosols will pass into the troposphere, generally through midlatitude tropopause folds or large scale circulation during the polar winter. Figure 3 shows total deposition rates for each of the ensembles. The model accounts for precipitation scavenging of particles and gravitational settling, but in our simulations, wet deposition accounted for over 90% of the total. This is in contrast to simulations of stratospheric sulfate aerosol geoengineering with an earlier version of the same model, which resulted in approximately 67% of total deposition being due to precipitation scavenging [Kravitz et al., 2009].


[16] Deposition rates come close to steady state for all ensembles by the end of the ten-year simulations (Figure 3). Again, with the exception of SmR, the curves in Figure 3 can be divided into two different categories, with the high altitude injections having a lower deposition rate than the low altitude injections. Aerosols injected at low altitudes are more susceptible to being caught in tropopause folds and being scavenged by tropical deep convective clouds extending into the lower stratosphere. With the exception of ensemble SmR, all experiments show a noticeable seasonal cycle with a peak in boreal spring and summer, with Def and LgR showing a stronger seasonal cycle than HA and HALgR. SmR shows distinct peaks in the summer of each hemisphere.


[17] To determine the reasons for these peaks, we examine spatial maps of deposition (Figure 4). In Def and LgR, large swaths of the midlatitudes show an increase in deposition. Aerosols in these two experiments remain concentrated in the lower stratosphere, where tropopause fold occurrence reaches a maximum during spring and summer [Van Haver et al., 1996]. The maximum is less pronounced for tropopause folding events involving higher stratospheric altitudes, but still present, explaining the midlatitude anomalies in ensemble HA. In these three experiments, Northern Hemisphere anomalies are larger than Southern Hemisphere anomalies, simply because the atmospheric mass burden of black carbon aerosols tends to favor the Northern Hemisphere (not pictured).


[18] Ensemble SmR does not have these anomalies in the midlatitudes, possibly implying tropopause folding is not a dominant mechanism of stratospheric removal for these aerosols. At this time, we are unable to ascertain a reason for this phenomenon and suggest a more thorough analysis of stratospheric dynamics in this experiment be conducted in the future.


[19] Polar deposition increases compared to the control ensemble in all four geoengineering ensembles, but most dramatically in ensemble SmR. This occurs during the polar summer, which explains the double peak for ensemble SmR in Figure 3. The other three ensembles show smaller increases in polar deposition. (Although polar deposition reaches similar values, the area over the poles is much smaller than the area over the midlatitudes, so globally averaged deposition is dominated by tropopause folding in these experiments.)


[20] One possible mechanism is that aerosols become trapped in the strengthened polar vortices (discussed in Section 6) and circulate around the poles until the summers, during which temperatures are warm enough for precipitation events. However, a great deal of further investigation is required to ascertain the viability of this mechanism.


[21] An additional phenomenon in Figure 4 is the increase in black carbon deposition over areas which appear to be urban centers or large sources of anthropogenic aerosols. These anomalies potentially imply a fundamental change in deposition mechanisms due to black carbon geoengineering. The apparent alignment may also be a coincidence, as these areas also have high summer rainfall. Further investigation is needed, but we are currently unable to ascertain a reason for this effect.



4. Radiative Perturbations


[22] The primary purpose of geoengineering is to perturb the radiative budget of the planet. Figure 5 shows anomalies in globally averaged radiation quantities (solar, thermal, and total), calculated at the top of atmosphere (TOA), tropopause, and surface for the Def ensemble. Other ensembles show similar separation of the nine different curves, albeit with different values (not pictured).


[23] Positive (where net is measured as down minus up) solar TOA radiation means less solar radiation is leaving the planet in the Def experiment than in the control ensemble, which is consistent with a stratospheric layer of absorbing aerosols. Thermal TOA radiation is also consistent with this layer, as a heated stratosphere will radiate more thermal energy to space. Negative total TOA radiation shows that more energy is being radiated to space in the Def experiment than in the control experiment, which implies cooling of the surface and atmosphere by the Stefan-Boltzmann law.


[24] At the tropopause, just below the aerosol layer in the Def experiment, all three radiation quantities are negative. Solar is negative because of the reduced amount of solar radiation reaching the tropopause. Because tropopause temperatures are raised significantly (discussed in Section 6), the warmer tropopause region loses more thermal radiation to space, but the relative temperature difference between the tropopause and the mesosphere or thermosphere, where radiative impacts are small, is larger than the relative difference between the tropopause and the surface, meaning net thermal radiation at the tropopause should be dominated by upward thermal radiation to space, i.e., tropopause thermal radiation should have negative values.



[25] The atmosphere is relatively transparent to solar radiation, so solar radiation at the tropopause and surface are, expectedly, similar. Thermal radiation at the surface is positive, which is consistent with surface cooling and subsequent reduced upward radiation.


[26] To compare the radiative efficiencies of the anomalies in each ensemble, we normalize radiation by the atmospheric mass loading to get units of W (kg BC)1, as in Table 3. As expected, smaller particles are more efficient at perturbing all radiation fields, with values in the SmR column dominating the table. All higher altitude injection experiments, when compared to their corresponding lower altitude experiments, show a reduced (in magnitude) radiative efficiency for the tropopause and surface, and a greater efficiency at TOA. However, this apparent dependence on altitude is artificial, in that for the higher altitude injection experiments, more aerosols are higher in altitude and farther from the tropopause, so the amount of radiative perturbation to TOA is more than for lower altitudes, and the perturbations to the tropopause and surface are less.



5. Surface Temperature Effects


[27] As the radiative perturbations show, geoengineering with black carbon aerosols does cool the surface, albeit by highly variable amounts depending upon the ensemble. However, showing results for globally averaged surface air temperature anomalies would not be particularly useful, as our simulations were conducted with fixed sea surface temperatures, which precludes the ability of the ocean to respond to radiative forcing. However, Hansen et al. [2007] showed that for fixed sea surface temperatures, one can obtain a reliable estimate of the expected surface temperature response by multiplying the TOA total radiation perturbation by the model’s climate sensitivity, as we have done in Table 4.


[28] According to the results of Table 4, under the specifications of ensemble Def, 1 Tg of black carbon aerosols injected into the stratosphere each year could cool the climate to levels observed approximately 25–30 years ago [Hansen et al., 2010]. Assuming temperature response scales linearly with injection amount, achieving the same amount of cooling under the specifications of ensembles HA, SmR, LgR, and HALgR would require annual injections of 0.08, 0.04, 6.70, and 0.18 Tg, respectively.


[29] Ensemble Def shows surface air temperature cooling by 0.38C, or a return to approximately 1980 temperature levels. This ensemble shows the most reasonable value of cooling, as LgR shows barely distinguishable cooling, and the others show over 2C of cooling, to well below preindustrial levels. A temperature anomaly of 0.38C is similar to the values simulated by Robock et al. [2008] in their experiment of tropical injections of 5 Tg a1 SO2. Therefore, in our discussions of stratospheric heating and its consequences in the following section, we concentrate on this scenario.



6. Consequences of Stratospheric Heating 


[30] Placing a large amount of absorbing aerosols in the stratosphere will cause stratospheric heating. Figure 6 shows globally averaged, vertically resolved stratospheric temperature anomalies for four ensembles. Ensemble LgR shows modest stratospheric heating concentrated near the tropopause. Ensemble SmR shows the largest heating, in some grid boxes by 80C. Def and SmR show cooling anomalies in the mesosphere, whereas ensemble HA shows heating throughout the entire upper atmosphere. Values in ensemble HA are similar to those found by Mills et al. [2008] in their nuclear winter simulations.


[31] Figure 7 shows the vertical temperature profiles for all ensembles. LgR shows only a slight departure from the control ensemble, with all other ensembles showing greater stratospheric warming. In most of the ensembles, the tropopause is pushed downward by the stratospheric heating. The tropopause is the point at which the combined heat radiation from the surface (from absorption of solar radiation) and heat radiation from the stratospheric ozone layer (from absorption of ultraviolet radiation) is at a minimum. Stratospheric heating changes this height, resulting in a lower tropopause. Similarly, the stratopause is the height of a local maximum in temperature due to heating from UV absorption. The ozone loss from black carbon geoengineering (discussed below) lowers the stratopause and causes mesospheric cooling, explaining the negative temperature anomalies in Figure 6. In the SmR experiment, heating is strong enough to destabilize the stratosphere. Further study is needed to determine the dynamical implications of this.


[32] One of the consequences of stratospheric heating is ozone loss. Mills et al. [2008] discuss the stratospheric chemistry of black carbon injection in great detail in reference to nuclear winter simulations. The model they use is far more detailed in terms of chemistry than ModelE2, but our simulations still capture the dominant processes that would lead to ozone loss. One is the Chapman mechanism [Chapman, 1930, 1942], described by the reaction


O3 þ O→2O2


which accelerates with higher temperatures, and the ozone forming reaction


O þ O2 þ M→O3 þ M


which is slower for higher temperatures [Groves et al., 1978]. Another is NOx-catalyzed ozone destruction, which is also temperature sensitive:


NO þ O3 → NO2 þ O2

NO2 þ O→ NO þ O2


The third is an interaction with the HOx cycle which results from increased water concentrations in the stratosphere (not pictured) due to warming of the tropical tropopause cold point:


OH þ O3 →HO2 þ O2

HO2 þ O3 →OH þ 2O2


[33] Figure 8 shows that experiment Def results in oscillating globally averaged ozone concentrations, with losses nearing 3% in austral summer and gains of nearly 4% in boreal summer. Spatial patterns show more complex behavior, with losses in the tropics, small gains in the subtropics, losses in the Arctic (most prominently in the spring), and gains in the Antarctic spring. Analyzing vertically resolved ozone mass, the stratospheric ozone layer shows a loss, but, similarly to Mills et al. [2008], our simulations show ozone recovery at lower altitudes in the tropics due to penetration of ultraviolet light to lower altitudes and consequent photodissociation of oxygen molecules [Solomon et al., 1992]. In the Def ensemble, this recovery is enough to compensate for the stratospheric loss.


[34] Figure 9 shows that effects on ozone depend on aerosol size and altitude of injection. Ensembles Def and LgR show no global ozone loss, and even a slight increase in some seasons, which is due to the previously mentioned mechanism of low altitude ozone production, which dominates the small amounts of ozone loss in some seasons. HALgR, HA, and SmR all show large amounts of global ozone loss, with ensemble SmR reaching nearly 50% loss by the end of the ten-year simulation. Experiment HA shows similar results to the nuclear winter simulations of Mills et al. [2008], with globally averaged ozone losses of 27–30% in the tenth year of simulation. Excepting SmR, we again see a clear separation, in that ensembles involving injections at higher altitudes show more ozone loss than injections at lower altitudes. 


[35] One of the features seen in Figure 8, which is also present in HALgR and SmR (not pictured) is Arctic ozone loss. Ozone destruction due to chlorofluorocarbon (CFC) emissions is a well known and publicized phenomenon [Solomon, 1999], without which the Antarctic ozone hole would not exist. However, in the presence of CFCs, the primary reason for concentrated ozone loss in the Antarctic is the circumpolar jet. The jet slows mixing with air from lower latitudes, so ozone loss that occurs in this area is not replenished rapidly through mixing with ozone-rich air. In turn, the jet slows horizontal heat transport, reducing compensation for radiative cooling in the polar night, allowing the pole to reach very cold temperatures. Additionally, heating outside the polar jet would assist in creating very cold temperatures over the Antarctic (by the thermal wind equation). These cold temperatures allow the formation of polar stratospheric clouds which serve as surfaces for ozone-destroying chlorine chemistry.


[36] Our results for stratospheric heating have strong potential for accelerating the Northern hemisphere polar jet, thus enhancing the Arctic ozone hole. Stratospheric heating after large volcanic eruptions is a well known phenomenon which causes dynamical effects, including strengthening of the polar jet in the Northern Hemisphere [Stenchikov et al., 1998; Robock, 2000; Shindell et al., 2001]. Therefore, the stratospheric heating from black carbon aerosol geoengineering, which is much greater than is found for large volcanic eruptions, would magnify this effect.


[37] Figure 10 shows anomalies in zonal wind resulting from the different geoengineering experiments and a control run climatology for comparison. LgR (not pictured) shows no apparent anomalies, and in Def, the anomalies are an increase in wind speed by 50% but are small compared to the other ensembles. HA and SmR show strengthening of winds by over a factor of two near both poles in summer and winter.


[38] Figure 11 shows climatologies (control ensemble) and anomalies over each pole in the seasonal cycle of total cloud fraction, which includes polar stratospheric cloud cover, in ensemble Def. The Arctic shows a reduction in upper-tropospheric cloud cover in the summer, which is consistent with heating from the aerosols, causing evaporation of clouds. In the winter, there is no sunlight, so heating from the aerosols is absent. Combining this with the strong jet seen in Figure 10 allows the Arctic stratosphere to cool in the winter (Figure 12), promoting Arctic PSC formation. Thus, we see evidence for the proposed mechanisms that would cause an Arctic ozone hole.


[39] Figure 8 also shows less Antarctic ozone loss in the austral spring, which is the time during which the ozone hole generally forms [Solomon, 1999]. Under normal circumstances, temperatures at this time are cold enough to allow PSCs to persist, but available sunlight initiates photodependent chlorine chemistry which causes stratospheric ozone destruction. However, under geoengineering with black carbon aerosols, sunrise during the austral spring causes heating of the Antarctic stratosphere (Figure 12). PSCs cannot persist at these temperatures, leading to lower amounts of stratospheric cloud cover and consequently increased amounts of ozone over the background, a phenomenon which was also found by Mills et al. [2008] in their nuclear winter simulations.


[40] The amounts of ozone destruction due to chlorine chemistry presented in this study are perhaps not representative of the effects if geoengineering with black carbon aerosols were actually conducted. CFC concentrations have been declining, and the resulting effects on ozone by geoengineering with stratospheric aerosols will be less as time progresses [Tilmes et al., 2008]. However, our results can potentially be used as an upper bound of the effects on ozone.


[41] One additional consequence of stratospheric heating by such large amounts is intrusive warming into the troposphere. Figure 13 shows globally averaged temperature anomalies for altitudes below 100 mb. All four ensembles show tropospheric warming. LgR expectedly shows the least warming, but anomalies of 0.25C still extend down to 500 mb. The effects of a high altitude injection are seen in the comparison of Def and HA, in that tropospheric warming is lessened for higher altitude injections. SmR shows the most warming of the troposphere, with anomalies extending down to the boundary layer.



7. Practicality of Black Carbon Aerosol Geoengineering


[42] The next natural questions are, should policy makers desire to deploy black carbon geoengineering in the stratosphere, how would it be done, and how much would it cost? To answer these questions, we look at two methods of BC aerosol production: diesel combustion and carbon black.


[43] Soot production is a particularly sensitive marker of diesel exhaust [Fruin et al., 2004]. Diesel combustion has the advantage of a vast infrastructure currently in place, including transportation and regulation, which would lend this technology particularly well to geoengineering purposes. Carbon black results from furnace combustion of heavy fuel oil in low oxygen [Crump, 2000]. It is generally an agglomeration of mostly elemental carbon particles, whereas black carbon aerosols often have adsorbed organic particles, depending upon the source of the emission [Watson and Valberg, 2001]. However, the mechanisms of formation of the two compounds are similar [Medalia et al., 1983], so we can assume the particle density and refractive indices are similar. However, a typical radius of black carbon aerosol is approximately 0.1 mm [Rose et al., 2006], while a typical carbon black agglomerate can have a diameter on the order of millimeters [Gandhi, 2005]. A larger diameter means a greatly increased fall speed as well as a reduced radiative efficiency, so the same mass of carbon black might be substantially less effective, or possibly ineffective, for geoengineering.


[44] The costs of these two different means are summarized in Table 5 and Figure 14. In Figure 14, we also include results from the calculations of Robock et al. [2009] for stratospheric sulfate aerosol geoengineering as a comparison.



7.1. Logistics and Costs of Using Diesel Fuel


[45] The black carbon emissions for heavy-duty diesel vehicles are approximately 1 g BC emitted per kg of fuel used [Kirchstetter et al., 1999], but the highest emitting 10% of all heavy-duty diesel trucks produce 42% of black carbon emissions [Ban-Weiss et al., 2009]. Assuming diesel engines could be tuned to produce 10 g black carbon per kg of fuel, the largest value reported by Ban-Weiss et al. [2009], and assuming an average density of 0.84 kg L1 of diesel fuel [T. W. Brown Oil Co., Inc., 1999], producing 1 Tg of black carbon would require combustion of 1.19 1011 L of diesel fuel, or approximately 10.8% of current worldwide production [U. S. Energy Information Administration (EIA), 2010a]. Refineries in the United States are operating at approximately 90% capacity [EIA, 2010b], so extrapolating this value worldwide implies geoengineering by combustion of diesel would require additional expansion of the current refining capacity, especially since this capacity is likely a theoretical maximum. We do not have estimates of cost for this expansion. We assume the cost of obtaining the oil, refining it into diesel, and transporting it to its desired destination, which would be the geoengineering deployment site, is included in the at-the-pump fuel cost. For each US $0.01 increase in the market price of diesel fuel, the annual cost of geoengineering increases by US $314 million.


[46] Industrial diesel engines are designed to run continuously at 100% capacity and need to be maintained relatively infrequently (Why we recommend used diesel generators, U. S. Power and Environment, 2010, http://www.uspowerco. com/articles/why_we_recommend_used_diesel_generators) (hereinafter USP&E, online article, 2010). As the central model for our calculations, we use specifications of the Caterpillar 3516B industrial engine (Caterpillar industrial wizard, 2010, (hereinafter, Caterpillar, online publication, 2010). Average costs for this particular engine are not available, but several auctions reported the sold price at US $395,000 (used), which we adopt as our price estimate. Assuming the engine is in operation for 2920 hours a year (365 days a year, 8 hours per day - the case for 24 hour per day operation is discussed in Table 5), this would require 75,100 engines at a capital cost of approximately US $30 billion. We do not include estimates of the cost of replacing the engines when they reach the end of their operational lifetime, but average diesel engine lifespans are in the range of 10–22 years [MacKay & Co., 2003; Lyon, 2007].


[47] The maintenance costs are twofold: actual cost to maintain the engine and replacement engines to operate during the equipment’s downtime. Maintenance requirements for the Caterpillar 3516B mean each engine will be inoperative 3.4% of the time (Caterpillar product operation and maintenance manuals (OMMS), 2010, com/cda/layout?m=133362&x=7.). To meet the required black carbon production rate, an additional 255 engines are required at a capital cost of US $100 million.


[48] Maintenance estimates for the Caterpillar G3520 industrial gas engine are approximately US $0.008 per kW-h, which is likely more expensive than maintaining a diesel engine (USP&E, online article, 2010). Using this as an upper bound, given that the 3516B runs at a maximum of 1492 kW of power generation (Caterpillar, online publication, 2010), the total annual maintenance cost is US $2.6 billion.


[49] A natural solution for getting the black carbon aerosols to the stratosphere is to place these diesel engines and diesel fuel in the cargo hold of airplanes and fly them to the stratosphere. Robock et al. [2009] evaluated several choices of aircraft that would be suitable for geoengineering (their cost estimates were similar to those of McClellan et al. [2010]), but we base our calculations here on the KC-10 Extender (Factsheets: KC-10 Extender, U.S. Air Force, 2010, = 109). It has a payload of 76,560 kg, a ceiling of 12.7 km, and a unit purchase price (2010 dollars) of US $116 million. This maximum altitude is only suitable for reaching the stratosphere at high latitudes, but because the aerosols self-loft, getting them to the upper troposphere is sufficient, resulting inrain-out of about 20% [Mills et al., 2008; Robock et al., 2007a; Fromm et al., 2010].


[50] Each airplane is capable of carrying more than one engine, so we decompose our calculations into units consisting of an engine and 8 hours of diesel fuel. The 3516B engine weighs up to 8028 kg and can consume 4339.12 L of fuel in 8 hours for a total unit weight of 11,977.0 kg (Caterpillar marine and power systems, 2010, http://marine. Each KC-10 Extender can hold 6 units per airplane, meaning 12,342 airplanes would be required at a total purchase price of US $1.4 trillion. Curtin [2003] gives an estimate of US $3.7 million in annual cost, based on 300 flying hours per year, for personnel, fuel, maintenance, modifications, and spare parts for the KC-135 airplane. As Robock et al. [2009] state, the KC-10 is a newer airplane and would likely be cheaper, so we use this value as an upper limit for our estimations. Scaling these maintenance costs, annual maintenance and personnel costs will be approximately US $36 million per plane, for a total annual operating cost of approximately US $450 billion.


[51] This combination results in a fixed cost of US $1.4 trillion and an operating cost of approximately US $540 billion. This is the cheapest of the methods shown in Table 5, which include calculations for the Caterpillar 3406C engine (Caterpillar, online publication, 2010), the KC-135 Stratotanker airplane (Factsheets: KC-135 Stratotanker, U.S. Air Force, 2010, asp?fsID=110), and geoengineering in three 8-hour shifts per day instead of a single shift.


[52] The world gross domestic product (purchasing power parity) in 2009 was US $69.98 trillion [Central Intelligence Agency, 2010]. The initial investment for geoengineering would be 2.0% of worldwide GDP, with an additional 0.8% each year. Stern [2006] states the cost of climate change for 2–3C of warming could be a permanent loss of up to 3% of GDP, so geoengineering with black carbon aerosols is slightly cheaper than the damage that would be caused by climate change and is vastly more expensive than geoengineering with sulfate aerosols [Robock et al., 2009]. 



Table 5. Fixed (One-Time) and Annual Costs for Geoengineering by Combustion of Diesel Fuel for Each Considered Combination of Diesel Engine, Airplane, and Daily Shift Numbera



aIncluded in the annual costs are an estimate of fuel consumption with an at-the-pump price of US $3.00 per gallon, for a total of US $94.3 billion. Values reported are in billions of dollars (B) and are rounded to two significant digits.



Intergovernmental Panel on Climate Change (IPCC) [2007] calculates that mitigation to reach a stabilization of 535–590 ppm CO2-eq would result in a GDP reduction by 0.2–2.5%, with a median reduction of 0.6% and an annual reduction of GDP growth rate by less than 0.1%. Compared to the cost of black carbon geoengineering by diesel fuel combustion, mitigation either costs the same or is cheaper by as much as an order of magnitude.


[53] The largest source of cost in this method is using airplanes to fly the diesel fuel and engines up to the stratosphere. If the black carbon aerosols were produced on the ground, collected, and then flown into the stratosphere to be dispersed, the fixed costs could be reduced to about US $31 billion, and the annual costs could be reduced to about US $97 billion [Robock et al., 2009].


[54] Thus far we have not considered the potential benefit of generation of a large amount of electricity from diesel fuel combustion. Using the Caterpillar 3516B engine would create approximately 330 TW-h of energy per Tg of BC aerosols produced, which could possibly be used to power the airplanes, reducing the associated costs and resources of operating the fleet. For comparison, in 2008, the worldwide energy consumption was approximately 132,000 TWh [British Petroleum, 2009].



7.2. Logistics and Costs of Using Carbon Black


[55] Carbon black feedstock is produced from fractional distillation of petroleum and is generally extracted as a heavy or residual fuel oil [Dow Chemical Company, 2010a, 2010b; International Carbon Black Association, 2004]. The yield of carbon black from the oil furnace process is 35–65% per mass of residual fuel oil, depending upon the chosen feedstock and the desired particle size, with smaller particles resulting in lower yields [U.S. Environmental Protection Agency (EPA), 1995]. Small particles are more efficient for geoengineering, so we use the lowest value in this range. Assuming an average density of carbon black feedstock of 1.08 kg L1 [Dow Chemical Company, 2010b] and that suitable feedstock (residual fuel oil) comprises approximately 8% of refinery yields [EIA, 2010b], producing 1 Tg of carbon black will require 3.18 1010 L of oil, or an additional 0.8% of current worldwide production [EIA, 2010b].


[56] Available furnace black production capacity in the United States (1998) is 1.6 109 kg of carbon black, more than sufficient to produce 1 Tg [Crump, 2000]. Annual production costs for all carbon black produced in the United States (1998) was US $625 million, or approximately US $0.33 per kg, with the finest grade having a 1998 cost of approximately US $1.03 per kg. Therefore, using current infrastructure, producing 1 Tg of carbon black would cost approximately US $1 billion.





Figure 14. Fixed (one-time) and annual per-Tg costs of stratospheric geoengineering with black carbon aerosols. Sulfur gas calculations are repeated from Robock et al. [2009] and are included for comparison.



Table 6. Significant Emissions Factors for Diesel Fuel Combustion and Carbon Black Productiona


aEmissions factors for diesel fuel are from EPA [1996, 2005] and for carbon black from EPA [1995]. All emissions factors are in total number of kg emitted for producing 1 Tg of black carbon aerosol (diesel fuel combustion) or carbon black. 95% of all carbon black is created by the furnace black process [Crump, 2000], so we use those emissions factors here. Only emissions factors which were deemed to be significant products are included.



[57] The costs of ferrying 1 Tg of carbon black to the stratosphere are similar to those reported in Robock et al. [2009]. The cheapest transportation option has fixed costs of US $1 billion and annual costs of about US $320 million. Including the cost of manufacturing the carbon black, the total per-Tg cost of geoengineering with carbon black is US $1 billion fixed and US $1.3 billion annually. We do not include the cost of transporting the carbon black to the geoengineering site in these estimates.



7.3. Emissions Factors


[58] Table 6 summarizes the various emission factors for the most abundant products of aerosol production, some of which we examine in more detail.


[59] Carbon dioxide, the chief contributor to climate change, is the largest emissions factor in Table 6 [IPCC, 2007]. The total worldwide emissions of CO2 are approximately 30 Pg of CO2 per year [International Energy Agency, 2011], so this would constitute an additional 1.1% of emissions. The additional CO2 produced from jet fuel combustion as part of the geoengineering process would be less than 1% of current aviation emissions, which are already only 2–3% of current worldwide emissions (Enviro Aero, Beginner’s Guide to Aviation Biofuels, 2009, biofuels).


[60] Diesel combustion produces NOx from high temperature dissociation of ambient nitrogen [EPA, 1996]. Creating 1 Tg of black carbon aerosols from diesel combustion would produce 8.5 Tg of NOx. Total worldwide NO emissions in 1990 were 49.6 Tg [Stevenson et al., 2004], so this source of NOx would be an additional 17%. NOx is an effective catalyst for destruction of stratospheric ozone [Crutzen, 1970]. This mechanism competes with reactions between other species, depending upon altitude [Finlayson-Pitts and Pitts, 2000]. Based on an experiment by Stolarski et al. [1995] simulating ozone destruction from a stratospheric fleet of high speed civil transport aircraft and extrapolating from a linear fit to their results, we roughly estimate that combustion of diesel fuel for geoengineering could cause a 10 to 3% change in total ozone column due to NOx alone.


[61] CO is by far the predominant emissions factor of carbon black manufacturing, although the CO emissions can be reduced by up to 99.8 percent by controlling with CO boilers, incinerators, or flares [EPA, 1995]. Without these controls, producing 1 Tg of carbon black would result in the emission of 1.4 x 10/6 kg of CO. Diesel combustion would result in a larger amount of 1.8 109 kg of CO. Carbon monoxide is naturally produced at a rate of 5x10/12 kg annually in the troposphere [Weinstock and Niki, 1972], so the additional CO from producing this large amount of aerosols would be negligible. The stratosphere is a natural sink for carbon monoxide, due to reaction with the hydroxyl radical [Pressman and Warneck, 1970], so we anticipate this emissions factor would not cause any noticeable adverse effects.


[62] Sulfur compounds resulting from diesel fuel combustion are due to sulfur content of the fuel. During the combustion process, nearly all of the sulfur is oxidized to SO2, which is a precursor to sulfate aerosols [EPA, 1996]. Using the emissions factor given in Table 6, creating 1 Tg of black carbon aerosols would result in the production of approximately 0.57 Tg of SO2, which would cause small climate effects but would still impact the planetary radiation budget [Robock et al., 2008; Kravitz and Robock, 2011; Solomon et al., 2011]. It is an insufficient amount to produce damaging acid rain [Kravitz et al., 2009]. Since the reporting of the year 1996 emissions factors given in Table 6, ultra-low sulfur diesel has been introduced to the market and is the only readily available diesel fuel in the United States [EPA, 2009], so this emissions factor would likely be lower than the values reported here. The chemistry effects of this increase in SOx may not be trivial, especially when considering the effects on ozone. Simulations of 2 Tg a1 injections of S into the stratosphere showed a delay in the recovery of the ozone hole by approximately 30 years [Tilmes et al., 2009], suggesting the additional SOx from our diesel fuel combustion calculations has the potential to cause ozone destruction.


[63] Methane is a powerful greenhouse gas, 23 times more effective than CO2 on a 100-year timescale [IPCC, 2007]. From the emissions factor reported in Table 6, producing 1 Tg of carbon black would result in the production of 2.5 x 10/4 kg of methane, or an increase in atmospheric concentrations by much less than 1 part per trillion. Current concentrations of methane are on the order of 1 ppm [IPCC, 2007], so this is a negligible contribution.



8. Discussion and Conclusions


[64] The radiative effectiveness at causing surface cooling depends strongly upon the aerosol size and altitude of injection. According to our simulations, with the exception of using small aerosols, possibly smaller than can be reasonably produced in large quantities, altitude of injection appears to be more important than aerosol size in determining the climate impacts of black carbon geoengineering. 


[65] The climate effects of this means of geoengineering have the potential to be severe, including stratospheric heating, ozone loss, and circulation changes. However, the degree of climate effects presented in this study are likely exaggerated. The values of cooling in Table 4 are quite large and are well in excess of any reasonable perturbation that would be desired for geoengineering as a means of countervailing increasing surface air temperatures due to anthropogenic CO2. Future studies of black carbon geoengineering would likely use considerably less mass than 1 Tg BC a1, possibly by several orders of magnitude.


[66] However, not all impacts of geoengineering will scale linearly with amount. Although the radiative impacts of aerosols are approximately linear with mass loading (assuming no change in the aerosol microphysical properties) [Hansen et al., 2005; Ricke et al., 2010], the chemical effects are certainly nonlinear. Ross et al. [2010] simulated stratospheric injections of black carbon with a mass loading of 2600 tons, approximately 500 times lower than the equilibrium loading for ensemble Def, yet showed tropical increases in ozone by up to 4% and losses in the Antarctic by 15%. These results imply that although reducing the amount of geoengineering can reduce the radiative impacts approximately linearly, the effects on chemistry and ozone require a great deal of further investigation.


[67] One particularly concerning result from our simulations is warming of the upper troposphere. The Tibetan Plateau has an altitude of approximately 500 mb [Zhisheng et al., 2001], well within the range of atmospheric warming, inviting the possibility of enhancing melting of glaciers. Not only would this create a positive feedback causing further warming, as melting of the glaciers will reduce the albedo of the Tibetan Plateau, but it would also reduce the available fresh water to all of the population centers downriver of the plateau, including China and India. In this sense, stratospheric geoengineering with black carbon could be catastrophic, although more analysis is needed to exactly determine the degree of deglaciation and the resulting impacts. Tropospheric warming, as was seen in Figure 13, also causes stabilization of the troposphere, which would have significant consequences for formation of deep convection, as well as cloud systems in general, suggesting serious implications for the hydrologic cycle.


[68] The logistics of geoengineering with black carbon aerosols via diesel combustion appear prohibitive, even if the amount of aerosol needed was an order of magnitude less. Of the means we discussed in Section 7.2, the costs are large, and the oil requirements would strain the current production market and refining capacity. Using a different source for the aerosol, such as carbon black, is similar in cost to using sulfate aerosols [Robock et al., 2009]. However, whether carbon black can be ground into particles that are small enough to be useful for geoengineering has yet to be determined.


[69] It is likely that geoengineering with black carbon aerosols has risks that are too great to make it a viable option for deployment. However, this study still has use as part of a spectrum. Sulfate aerosols, which have received the most attention in the study of stratospheric geoengineering, are excellent scatterers, and black carbon is an excellent absorber. Therefore, any choice of aerosol, be it natural or engineered, can be seen as lying on a spectrum between sulfate and black carbon in terms of the relative fractions of scattered and absorbed light.


[70] This study invites a great deal of future work. One of the major shortcomings of this study is the use of fixed sea surface temperatures. Although this is very useful and a standard method in CCMVal simulations [SPARC CCMVal, 2010] to isolate the stratospheric response, this does not allow us to assess ocean heat uptake, which modulates surface air temperature and affects circulation patterns. It also severely hampers our ability to assess effects on the hydrologic cycle and the cryosphere. Of particular importance is the “dirty snow effect” which describes a decrease in albedo of fresh snow as soot deposits onto it [Vogelmann et al., 1988]. Additionally, our discussion of cloud cover is limited to polar stratospheric clouds, as our inability to accurately assess the hydrologic cycle carries through to tropospheric cloud cover.


[71] Changes in ozone concentrations and the polar vortices have links to air temperature and circulation which depend upon ocean temperature. These effects cannot be considered in our study, although the bulk of impacts on these two quantities is due to the large amount of stratospheric heating seen in our simulations, the magnitude of which would likely overwhelm any secondary effects.


[72] Some of the chemical effects we described would benefit from more thorough analysis. Excellent treatments of the chemical implications of geoengineering with stratospheric aerosols have been performed [Tilmes et al., 2008; Heckendorn et al., 2009]. Although these studies involved sulfate aerosols, many similar considerations would also apply to black carbon aerosols [Mills et al., 2008; Ross et al., 2010]. Additionally, the sensitivity of our results to aerosol size implies that unanticipated reductions in aerosol size due to chemistry or other potential influences could present serious problems.


[73] One large source of uncertainty in our study is the interactions of the aerosols with clouds. Adding absorbing interstitial aerosols to clouds would almost certainly alter their radiative properties, causing them to absorb more solar radiation. The absorption of solar radiation by black carbon is potent in a multiple scattering environment where the probability of photon interaction with the BC aerosol is greatly enhanced. While such absorption would probably assist in reducing the surface temperature by reducing shortwave radiation, the temperature of the atmospheric column would likely be substantially increased and longwave downwelling increased. This would likely reduce the efficiency of black carbon geoengineering in regions with significant cloud cover. Similarly, one may quickly deduce that this mechanism could be catastrophic in the marine stratus belts where a small amount of warming in the cloud decouples it from the underlying ocean that supplies the vapor which maintains the cloud system, which in turn could cause evaporation of the clouds. This aspect would benefit from a modeling experiment in which significant concentrations of absorbing aerosols were added to clouds, giving photons an opportunity to be absorbed in a multiple scattering environment.


[74] And finally, an important consideration is the effects of geoengineering on health. The impacts are numerous, but of particular note is the toxicity of the aerosols once they have descended into the troposphere [Baan et al., 2006;  Center for Disease Control, 1999]. Moreover, the additional ultraviolet radiation that would reach the surface due to ozone loss would be detrimental to human health and large parts of the biosphere [Hutchinson et al., 1985; Madronich et al., 1998; Molina et al., 2000].


[75] The study of black carbon geoengineering is useful in understanding the climate response to a spectrum of different aerosol properties. However, due to the numerous, potentially catastrophic side effects, it is likely not viable itself as a means of modifying the climate.


[76] Acknowledgments. We thank Barbara Turpin, Ken Caldeira, and Anthony Broccoli for comments, as well as the reviewers for helpful suggestions. Model development and computer time at NASA Goddard Space Flight Center are supported by National Aeronautics and Space Administration climate modeling grants. The work of Kravitz and Robock is supported by NSF grant ATM-070452.






Baan, R., K. Straif, Y. Grosse, B. Secretan, F. El Ghissassi, and V. Cogliano (2006), Carcinogenicity of carbon black, titanium dioxide, and talc, Lancet Oncol., 7(4), 295–296, doi:10.1016/S1470-2045(06)70651-9.


Ban-Weiss, G. A., M. M. Lunden, T. W. Kirchstetter, and R. A. Harley (2009), Measurement of black carbon particle number emission factors from individual heavy-duty trucks, Environ. Sci. Technol., 43(5), 1419– 1424, doi:10.1021/es8021039.


Ban-Weiss, G. A., L. Cao, G. Bala, and K. Caldeira (2012), Dependence of climate forcing and response on the altitude of black carbon aerosols, Clim. Dyn., 38, 897–911, doi:10.1007/s00382-011-1052-y.


British Petroleum (2009), BP statistical review of world energy June 2009, report, 48 pp., London. [Available at internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_ energy_review_2008/STAGING/local_assets/2009_downloads/statistical_ review_of_world_energy_full_report_2009.pdf.]


Center for Disease Control (1999), Elemental carbon (diesel particulate): Method 5040, Issue 3 (Interim), in NIOSH Manual of Analytical Methods, 4th rev. ed., pp. 5040-1–5040-9, Cent. for Disease Control, Washington, D. C. [Available at



Central Intelligence Agency (2010), The World Factbook 2010, Potomac Books, Washington, D. C. [Available at]


Chapman, S. (1930), On ozone and atomic oxygen in the upper atmosphere, Philos. Mag., 10, 369–383.


Chapman, S. (1942), The photochemistry of atmospheric oxygen, Rep. Prog. Phys., 9, 92–100, doi:10.1088/0034-4885/9/1/310.


Chylek, P., G. Videen, D. Ngo, R. G. Pinnick, and J. D. Klett (1995), Effect of black carbon on the optical properties and climate forcing of sulfate aerosols, J. Geophys. Res., 100, 16,325–16,332.


Crump, E. L. (2000), Economic impact analysis for the proposed carbon black manufacturing NESHAP, EPA-452/D-00-003, 16 pp., Environ. Prot. Agency, Washington, D. C. [Available online at]


Crutzen, P. J. (1970), The influence of nitrogen oxides on the atmospheric ozone content, Q. J. R. Meteorol. Soc., 96(408), 320–325, doi:10.1002/ qj.49709640815.


Crutzen, P. J. (2006), Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma?, Clim. Change, 77, 211–219, doi:10.1007/s10584-006-9101-y.


Curtin, N. P. (2003), Information on Air Force serial refueling tankers, testimony before the Subcommittee on Projection Forces, Committee on Armed Services, House of Representatives, Rep. GAO-03-938T, 8 pp., Gov. Account. Off., Washington, D. C. [Available at]


Dow Chemical Company (2010a), Carbon black feed safety data sheet, report, 8 pp., Midland, Mich. [Available at]


Dow Chemical Company (2010b), Carbon black feedstock product safety assessment, report, 6 pp., Midland, Mich. [Available online at]


Ferraro, A. J., E. J. Highwood, and A. J. Charlton-Perez (2011), Stratospheric heating by potential geoengineering aerosols, Geophys. Res. Lett., 38, L24706, doi:10.1029/2011GL049761.


Finlayson-Pitts, B. J., and J. N. Pitts Jr. (2000), Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications, 969 pp., Academic, San Diego, Calif. Fromm, M., et al. (2010), The untold story of pyrocumulonimbus, Bull. Am. Meteorol. Soc., 91, 1193–1209, doi:10.1175/2010BAMS3004.1.


Fruin, S. A., A. M. Winer, and C. E. Rodes (2004), Black carbon concentrations in California vehicles and estimation of in-vehicle diesel exhaust particulate matter exposures, Atmos. Environ., 38, 4123–4133, doi:10.1016/j. atmosenv.2004.04.026.


Gandhi, B. (2005), Reassessment of one exemption from the requirement of a tolerance for carbon black, report, 9 pp., Environ. Prot. Agency, Washington, D. C. [Available online at inerts/carbonblack.pdf.]


Govindasamy, B., and K. Caldeira (2000), Geoengineering Earth’s radiation balance to mitigate CO2-induced climate change, Geophys. Res. Lett., 27(14), 2141–2144, doi:10.1029/1999GL006086.


Groves, K. S., S. R. Mattingly, and A. F. Tuck (1978), Increased atmospheric carbon dioxide and stratospheric ozone, Nature, 273, 711–715.


Hansen, J., et al. (2005), Efficacy of climate forcings, J. Geophys. Res., 110, D18104, doi:10.1029/2005JD005776.


Hansen, J., et al. (2007), Climate simulations for 1880–2003 with GISS modelE, Clim. Dyn., 29, 661–696, doi:10.1007/s00382-007-0255-8.


Hansen, J., R. Ruedy, M. Sato, and K. Lo (2010), Global surface temperature change, Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.


Heckendorn, P., D. Weisenstein, S. Fueglistaler, B. P. Luo, E. Rozanov, M. Schraner, L. W. Thomason, and T. Peter (2009), The impact of geoengineering aerosols on stratospheric temperature and ozone, Environ. Res. Lett., 4, 045108, doi:10.1088/1748-9326/4/4/045108.


Hutchinson, T. C., M. A. Harwell, W. P. Cropper, and H. D. Grover (1985), Additional potential effects of nuclear war on ecological systems, in Environmental Consequences of Nuclear War, edited by M. A. Harwell and T. C. Hutchinson, pp. 174–184, John Wiley, Hoboken, N. J.

Intergovernmental Panel on Climate Change (IPCC) (2007), Climate Change 2007: the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 996 pp., Cambridge Univ. Press, Cambridge, UK.


International Carbon Black Association (2004), Carbon black user’s guide: Safety, health, and environmental information, report, 11 pp., Boston, Mass. [Available at pdf.]


International Energy Agency (2011), CO2 emissions from fuel combustion: Highlights, 134 pp., Paris. [Available online at co2highlights/CO2highlights.pdf.]


Keith, D. W. (2010), Photophoretic levitation of engineered aerosols for geoengineering, Proc. Natl. Acad. Sci. U. S. A., 107(38), 16,428– 16,431, doi:10.1073/pnas.1009519107.


Kirchstetter, T. W., R. A. Harley, N. M. Kreisberg, M. R. Stolzenburg, and S. V. Hering (1999), On-road measurement of fine particle and nitrogen oxide emissions from light and heavy duty motor vehicles, Atmos. Environ., 33(18), 2955–2968, doi:10.1016/S1352-2310(99)00089-8.


Koch, D. (2001), Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM, J. Geophys. Res., 106, 20,311–20,332.


Kravitz, B., and A. Robock (2011), The climate effects of high latitude eruptions: The role of the time of year, J. Geophys. Res., 116, D01105, doi:10.1029/2010JD014448.


Kravitz, B., A. Robock, L. Oman, G. Stenchikov, and A. B. Marquardt (2009), Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols, J. Geophys. Res., 114, D14109, doi:10.1029/ 2009JD011918.


Kravitz, B., A. Robock, O. Boucher, H. Schmidt, K. Taylor, G. Stenchikov, and M. Schulz (2011), The Geoengineering Model Intercomparison Project (GeoMIP), Atmos. Sci. Lett., 12, 162–167, doi:10.1002/asl.316.


Lane, L., K. Caldeira, R. Chatfield, and S. Langhoff (2007), Workshop report on managing solar radiation, NASA/CP-2007-214558, 31 pp.,  NASA Goddard Space Flight Cent., Greenbelt, Md. Lyon, S. (2007), The Massachusetts 2002 diesel particulate matter inventory,

report, 123 pp., Mass. Dep. of Environ. Prot., Boston. [Available online at]


MacKay & Co. (2003), America’s fleet remains strong, Constr. Equip., August 2003, 10 pp.


Madronich, S., R. L. McKenzie, L. O. Bjorn, and M. M. Caldwell (1998), Changes in biologically active ultraviolet radiation reaching the Earth’s surface, J. Photochem. Photobiol. B, 46, 5–19.


McClellan, J., J. Sisco, B. Suarez, and G. Keogh (2010), Geoengineering cost analysis, AR10-182, 86 pp., Aurora Flight Sci., Cambridge,


Mass. Medalia, A. I., D. Rivin, and D. R. Sanders (1983), A comparison of carbon black with soot, Sci. Total Environ., 31(1), 1–22, doi:10.1016/0048-9697 (83)90053-0.


Mills, M. J., O. B. Toon, R. P. Turco, D. E. Kinnison, and R. R. Garcia(2008), Massive global ozone loss predicted following regional nuclear conflict, Proc. Natl. Acad. Sci. U. S. A., 105(14), 5307–5312, doi:10.1073/pnas.0710058105.


Molina, M. J., L. T. Molina, T. B. Fitzpatrick, and P. T. Nghiem (2000), Ozone depletion and human health effects, in Environmental Medicine, edited by L. Moóller, pp. 28–51, Joint Ind. Safety Counc., Stockholm.


Nienow, A. M., and J. T. Roberts (2006), Heterogeneous chemistry of carbon aerosols, Annu. Rev. Phys. Chem., 57, 105–128, doi:10.1146/ annurev.physchem.57.032905.104525.


Pressman, J., and P. Warneck (1970), The stratosphere as a chemical sink for carbon monoxide, J. Atmos. Sci., 27(1), 155–163.


Pueschel, R. F., S. Verma, H. Rohatschek, G. V. Ferry, N. Boiadjieva, S. D. Howard, and A. W. Strawa (2000), Vertical transport of anthropogenic soot aerosol into the middle atmosphere, J. Geophys. Res., 105(D3), 3727–3736, doi:10.1029/1999JD900505.


Rasch, P. J., S. Tilmes, R. P. Turco, A. Robock, L. Oman, C.-C. Chen, G. L. Stenchikov, and R. R. Garcia (2008), An overview of geoengineering of climate using stratospheric sulfate aerosols, Philos. Trans. R. Soc. A, 366, 4007–4037, doi:10.1098/rsta.2008.0131.


Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan (2003), Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108(D14), 4407, doi:10.1029/ 2002JD002670.


Ricke, K. L., M. G. Morgan, and M. R. Allen (2010), Regional climate response to solar-radiation management, Nat. Geosci., 3, 537–541, doi:/ 10.1038/ngeo915.


Robock, A. (1988), Enhancement of surface cooling due to forest fire smoke, Science, 242(4880), 911–913, doi:10.1126/science.242.4880.911.


Robock, A. (1991), Surface cooling due to forest fire smoke, J. Geophys. Res., 96(D11), 20,869–20,878, doi:10.1029/91JD02043.


Robock, A. (2000), Volcanic eruptions and climate, Rev. Geophys., 38, 191–219, doi:10.1029/1998RG000054.


Robock, A., L. Oman, G. L. Stenchikov, O. B. Toon, C. Bardeen, and R. P. Turco (2007a), Climatic consequences of regional nuclear conflicts, Atmos. Chem. Phys., 7, 2003–2012, doi:10.5194/acp-7-2003-2007.


Robock, A., L. Oman, and G. L. Stenchikov (2007b), Nuclear winter revisited with a modern climate model and current nuclear arsenals: Still catastrophci consequences, J. Geophys. Res., 112, D13107, doi:10.1029/ 2006JD008235.


Robock, A., L. Oman, and G. L. Stenchikov (2008), Regional climate responses to geoengineering with tropical and Arctic SO2 injections, J. Geophys. Res., 113, D16101, doi:10.1029/2008JD010050.


Robock, A., A. Marquardt, B. Kravitz, and G. Stenchikov (2009), Benefits, risks, and costs of stratospheric geoengineering, Geophys. Res. Lett., 36, L19703, doi:10.1029/2009GL039209.


Rohatschek, H. (1996), Levitation of stratospheric and mesospheric aerosols by gravitophoresis, J. Aerosol Sci., 27(3), 467–475, doi:10.1016/ 0021-8502(95)00556-0.


Rose, D., B. Wehner, M. Ketzel, C. Engler, J. Voigtländer, T. Tuch, and A. Wiedensohler (2006), Atmospheric number size distributions of soot particles and estimation of emission factors, Atmos. Chem. Phys., 6, 1021–1031, doi:10.5194/acp-6-1021-2006.


Ross, M., M. Mills, and D. Toohey (2010), Potential climate impact of black carbon emitted by rockets, Geophys. Res. Lett., 37, L24810, doi:10.1029/2010GL044548.


Sato, M., et al. (2003), Global atmospheric black carbon inferred from AERONET, Proc. Natl. Acad. Sci. U. S. A., 100, 6319–6324.


Schmidt, G. A., et al. (2006), Present-day atmospheric simulations using GISS ModelE: Comparison to in situ, satellite and reanalysis data, J. Clim., 19, 153–192, doi:10.1175/JCLI3612.1.


Shindell, D. T., G. A. Schmidt, R. L. Miller, and D. Rind (2001), Northern Hemisphere winter climate response to greenhouse gas, ozone, solar, and volcanic forcing, J. Geophys. Res., 106(D7), 7193–7210, doi:10.1029/ 2000JD900547.


Shindell, D. T., G. Faluvegi, N. Unger, E. Aguilar, G. A. Schmidt, D. M. Koch, S. E. Bauer, and R. L. Miller (2006), Simulations of preindustrial, present-day, and 2100 conditions in the NASA GISS composition and climate model G-PUCCINI, Atmos. Chem. Phys., 6, 4427–4459,



Solomon, S. (1999), Stratospheric ozone depletion: A review of concepts and history, Rev. Geophys., 37(3), 275–316, doi:10.1029/1999RG900008.


Solomon, S., M. Mills, L. E. Heidt, W. H. Pollock, and A. F. Tuck (1992), On the evaluation of ozone depletion potentials, J. Geophys. Res., 97 (D1), 825–842, doi:10.1029/91JD02613.


Solomon, S., J. S. Daniel, R. R. Neely III, J. P. Vernier, E. G. Dutton, and L. W. Thomason (2011), The persistently variable “background” stratospheric aerosol layer and global climate change, Science, 333 (6044), 866–870, doi:10.1126/science.1206027.


SPARC CCMVal (2010), SPARC report on the evaluation of chemistryclimate models, edited by V. Eyring, T. G. Shepherd, and D. W. Waugh, SPARC Rep. 5, 426 pp., Univ. of Toronto, Toronto, Ont., Canada. [Available at]


Stenchikov, G. L., I. Kirchner, A. Robock, H.-F. Graf, J. C. Antuña, R. G. Grainger, A. Lambert, and L. Thomason (1998), Radiative forcing from the 1991 Mount Pinatubo volcanic eruption, J. Geophys. Res., 103, 13,837–13,857, doi:10.1029/98JD00693.


Stern, N. (2006), The Economics of Climate Change: The Stern Review, Executive Summary, 27 pp., Her Majesty’s Treasury, London. [Available at]


Stevenson, D. S., R. M. Doherty, M. G. Sanderson, W. J. Collins, C. E. Johnson, and R. G. Derwent (2004), Radiative forcing from aircraft NOx emissions: Mechanisms and seasonal dependence, J. Geophys. Res., 109, D17307, doi:10.1029/2004JD004759.


Stolarski, R. S., et al. (1995), 1995 scientific assessment of the atmospheric effects of stratospheric aircraft, NASA Ref. Publ., 1381, 105 pp.


Tang, I. N. (1996), Chemical and size effects of hygroscopic aerosols on light scattering coefficients, J. Geophys. Res., 101(D14), 19,245–19,250.


Teller, E., L. Wood, and R. Hyde (1997), Global warming and ice ages: I. Prospects for physics-based modulation of global change, UCRL-JC- 128715, 18 pp., Lawrence Livermore Natl. Lab., Livermore, Calif.


Teller, E., R. Hyde, and L. Wood (2002), Active climate stabilization: Practical physics-based approaches to prevention of climate change, report, 8 pp., Lawrence Livermore Natl. Lab., Livermore, Calif.


Tilmes, S., R. Müller, and R. Salawitch (2008), The sensitivity of polar ozone depletion to proposed geoengineering schemes, Science, 320, 1201–1204, doi:10.1126/science.1153966.


Tilmes, S., R. R. Garcia, D. E. Kinnison, A. Gettelman, and P. J. Rasch (2009), Impact of geoengineered aerosols on the troposphere and stratosphere, J. Geophys. Res., 114, D12305, doi:10.1029/2008JD011420.


Toon, O. B., A. Robock, R. P. Turco, C. Bardeen, L. Oman, and G. L. Stenchikov (2007), Consequences of regional-scale nuclear conflicts, Science, 315, 1224–1225, doi:10.1126/science.1137747.


Turco, R. P., O. B. Toon, T. P. Ackerman, J. B. Pollack, and C. Sagan (1983), Nuclear winter: Global consequences of multiple nuclear explosions, Science, 222(4630), 1283–1292, doi:10.1126/ science.222.4630.1283.


T. W. Brown Oil Co., Inc. (1999), Material safety data sheet for #2 diesel, report, 2 pp., Ventura, Calif. [Available at safety/dieselfuelmsds.pdf.]


U.S. Energy Information Administration (EIA) (2010a), Global oil consumption, report, 2 pp., Washington, D. C. [Available at http://www.]


U.S. Energy Information Administration (EIA) (2010b), U.S. refining capacity, report, 2 pp., Washington, D. C. [Available at http://www.eia. Refining Capacity.]


U.S. Environmental Protection Agency (EPA) (1995), Carbon black, in AP 42 Compilation of Air Pollutant Emission Factors, vol. I, 5th ed., pp. 6.1- 1–6.1-10, U.S. Environ. Prot. Agency, Washington, D. C. [Available at]


U.S. Environmental Protection Agency (EPA) (1996), Gasoline and diesel industrial engines, in AP 42 Compilation of Air Pollutant Emission Factors, vol. I, 5th ed. update, pp. 3.3-1–3.3-9,


U.S. Environ. Prot. Agency, Washington, D. C. [Available at]


U.S. Environmental Protection Agency (EPA) (2005), Average carbon dioxide emissions resulting from gasoline and diesel fuel, EPA 420-F- 05-001, 3 pp., U.S. Environ. Prot. Agency, Washington, D. C. [Available online at]


U.S. Environmental Protection Agency (EPA) (2009), Heavy-duty highway diesel program, report, Washington, D. C. [Available online at http://]


Van Haver, P., D. De Muer, M. Beekmann, and C. Mancier (1996), Climatology of tropopause folds at midlatitudes, Geophys. Res. Lett., 23(9), 1033–1036, doi:10.1029/96GL00956.


Vogelmann, A. M., A. Robock, and R. G. Ellingson (1988), Effects of dirty snow in nuclear winter simulations, J. Geophys. Res., 93(D5), 5319– 5332, doi:10.1029/JD093iD05p05319.


Watson, A. Y., and P. A. Valberg (2001), Carbon black and soot: Two different substances, AIHA J., 62(2), 218–228, doi:10.1080/ 15298660108984625.


Weinstock, B., and H. Niki (1972), Carbon monoxide balance in nature, Science, 176(4032), 290–292, doi:10.1126/science.176.4032.290.


Zhisheng, A., J. E. Kutzbach, W. L. Prell, and S. C. Porter (2001), Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times, Nature, 411, 62–66, doi:10.1038/ 35075035.












Ein künstliches Klima durch SRM Geo-Engineering


Sogenannte "Chemtrails" sind SRM Geoengineering-Forschungs-Experimente


Illegale Feldversuche der SRM Technik, weltweit.



Illegale militärische und zivile GE-Forschungen finden in einer rechtlichen Grauzone statt.


Feldversuche oder illegale SRM Interventionen wurden nie in nur einem einzigen Land der Welt,  je durch ein Parlament gebracht, deshalb sind sie nicht legalisiert und finden in einer rechtlichen Grauzone der Forschung statt. Regierungen wissen genau, dass sie diese Risiko-Forschung, die absichtliche Veränderung mit dem Wetter nie durch die Parlamente bekommen würden..


HAARP - Die Büchse der Pandora in militärischen Händen



Illegale zivile und militärische SRM Experimente finden 7 Tage die Woche (nonstop) rund um die Uhr statt. 


Auch Nachts - trotz Nacht-



Geo-Engineering Forschung



Der Wissenschaftler David Keith, der die Geo-Ingenieure Ken Caldeira und Alan Robock in ihrer Arbeit unterstütztsagte auf einem Geo-Engineering - Seminar am 20. Februar 2010, dass sie beschlossen hätten, ihre stratosphärischen Aerosol-Modelle von Schwefel auf Aluminium umzustellen.


Niemand auf der ganzen Welt , zumindest keiner der staatlichen Medien berichtete von diesem wichtigen Ereignis.





Wissenschaftler planen 10 bis 20 Megatonnen hoch toxischer Materialien wie Aluminium, synthetischen Nanopartikeln jedes Jahr in unserer Atmosphäre auszubringen.


Die Mengenangaben von SRM Materialien werden neuerdings fast immer in Teragramm berechnet. 


  1 Teragramm  = 1 Megatonne

  1 Megatonne  = 1 Million Tonnen



SAI = Stratosphärische

Aerosol Injektionen mit toxischen Materialen wie:


  • Aluminiumoxide
  • Black Carbon 
  • Zinkoxid 
  • Siliciumkarbit
  • Diamant
  • Bariumtitanat
  • Bariumsalze
  • Strontium
  • Sulfate
  • Schwefelsäure 
  • Schwefelwasserstoff
  • Carbonylsulfid
  • Ruß-Aerosole
  • Schwefeldioxid
  • Dimethylsulfit
  • Titan
  • Lithium
  • Kalkstaub
  • Titandioxid
  • Natriumchlorid
  • Meersalz 
  • Calciumcarbonat
  • Siliciumdioxid
  • Silicium
  • Bismuttriiodid (BiI3
  • Polymere
  • Polymorph von TiO2





April 2016 

Aerosol Experiments Using Lithium and Psychoactive Drugs Over Oregon.



SKYGUARDS: Petition an das Europäische Parlament



Wir haben keine Zeit zu verlieren!




Klage gegen Geo-Engineering und Klimapolitik 


Der Rechtsweg ist vielleicht die einzige Hoffnung, Geo-Engineering-Programme zum Anhalten zu bewegen. Paris und andere Klimaabkommen schaffen Ziele von rechtlich international verbindlichen Vereinbarungen. Wenn sie erfolgreich sind, werden höchstwahrscheinlich SRM-Programme ohne ein ordentliches Gerichtsverfahren legalisiert. Wenn das geschieht, wird das unsere Fähigkeit Geoengineering zu verhindern und jede Form von rechtlichen Maßnahmen zu ergreifen stark behindern.


Ziel dieser Phase ist es, Mittel zu beschaffen um eine US- Klage vorzubereiten. Der Hauptanwalt Wille Tierarzt wählt qualifizierte Juristen aus dem ganzen Land aus, um sicher zu stellen, dass wir Top-Talente sichern, die wir für unser langfristiges Ziel einsetzen.



Die Fakten sind, dass seit einem Jahrzehnt am Himmel illegale Wetter -Änderungs-Programme stattfinden, unter Einsatz des Militärs im Rahmen der NATO, ohne Wissen oder Einwilligung der Bevölkerung..

EU-Konferenz und Petition über Wettermodifizierung und Geoengineering in Verbindung mit HAARP Technologien


Die Zeit ist gekommen. Anonymous wird nicht länger zusehen. Am 23. April werden wir weltweit gegen Chemtrails und Geoengineering friedlich demonstrieren.


Anonymous gegen Geoengineering 



Wir waren die allerletzten Zeit Zeugen eines normalen natürlichen blauen Himmels.





Heute ist der Himmel nicht mehr blau, sondern eher rot oder grau. 



Metapedia –

Die alternative Enzyklopädie




Die neue Enzyklopädie Chemtrails GeoEngineering HAARP






SRM - Geoengineering

Aluminium anstatt Schwefeloxid


Im Zuge der American Association for the Advancement of Science (AAAS) Conference 2010, San Diego am 20. Februar 2010, wurde vom kanadischen Geoingenieur David W. Keith (University of Calgary) vorgeschlagen, Aluminium anstatt Schwefeldioxid zu verwenden. Begründet wurde dieser Vorschlag mit 1) einem 4-fach größeren Strahlungsantrieb 2) einem ca. 16-fach geringeren Gerinnungsfaktor. Derselbe Albedoeffekt könnte so mit viel geringeren Mengen Aluminium, anstatt Schwefel, bewerkstelligt werden. [13]


Mehr Beweise als dieses Video braucht man wohl nicht. >>> Aerosol-Injektionen


Das "Geo-Engineering" Klima-Forschungsprogramm der USA wurde direkt dem Weißen Haus unterstellt,

bzw. dort dem White House Office of Science and Technology Policy (OSTP) zugewiesen. 



Diese Empfehlung lassen bereits das Konfliktpotential dieser GE-Forschung erahnen.






In den USA fällt Geo-Engineering unter Sicherheitspolitik und Verteidigungspolitik: 



Geo-Engineering als Sicherheitspolitische Maßnahme..


Ein Bericht der NASA merkt an, eine Katastrophensituation könnte die Entscheidung über SRM maßgeblich erleichtern, dann würden politische und ökonomische Einwände irrelevant sein. Die Abschirmung von Sonnenlicht durch SRM Maßnahmen wäre dann die letzte Möglichkeit, um einen katastrophalen Klimawandel abzuwenden.


maßgeblich erleichtern..????


Nach einer Katastrophensituation sind diese ohnehin illegalen geheimen militärischen SRM Programme wohl noch leichter durch die Parlamente zu bringen unter dem Vorwand der zivilen GE-Forschung. 




Der US-Geheimdienst CIA finanziert mit 630.000 $ für die Jahre   2013/14 

Geoengineering-Studien. Diese Studie wird u.a. auch von zwei anderen staatlichen Stellen NASA und NOAA finanziert. 




Um möglichst keine Spuren zu hinterlassen.. sind wirklich restlos alle Links im Netz entfernt worden. 






Es existieren viele Vorschläge zur technologischen Umsetzung des stratosphärischen Aerosol- Schildes.


Ein Patent aus dem Jahr 1991 behandelt das Einbringen von Aerosolen in die Stratosphäre

(Chang 1991).


Ein neueres Patent behandelt ein Verfahren, in dem Treibstoffzusätze in Verkehrsflugzeugen zum Ausbringen reflektierender Substanzen genutzt werden sollen (Hucko 2009).




Die von Microsoft finanzierte Firma Intellectual Ventures fördert die Entwick­lung eines „Stratoshield“ genannten Verfahrens, bei dem die Aerosolerzeugung in der Strato­sphäre über einen von einem Ballon getragenen Schlauch vom Erdboden aus bewirkt werden soll.



CE-Technologien wirken entweder symptomatisch oder ursächlich


Symptomatisch wirkend: 

Modifikation durch SRM-Geoengineering- Aerosole in der Stratosphäre


Ursächlich wirkend: 

Reduktion der CO2 Konzentration (CDR) 


Effekte verschiedener Wolkentypen


Dicke, tief hängende Wolken reflektieren das Sonnenlicht besonders gut und beeinflussen kaum die Energie, die von der Erde als langwellige Infrarotstrahlung abgegeben wird. Hohe Wolken sind dagegen kälter und meist dünner. Sie lassen daher mehr Sonnenlicht durch, dafür speichern sie anteilig mehr von der langwelligen, abgestrahlten Erdenergie. Um die Erde abzukühlen, sind daher tiefe Wolken das Ziel der Geoingenieure.



Zirruswolken wirken also generell erwärmend (Lee et al. 2009). Werden diese Wolken künstlich aufgelöst oder verändert, so wird sich in der Regel ein kühlender Effekt ergeben.


Nach einem Vorschlag von Mitchell et al.  (2009) könnte dies durch ein Einsäen von effizienten Eiskeimen bei der Wolkenbildung geschehen.



Eiskeime werden nur in sehr geringer Menge benötigt und könnten beispielsweise durch Verkehrs-Flugzeuge an geeigneten Orten ausgebracht werden. Die benötigten Materialmengen liegen dabei im Bereich von einigen kg pro Flug.



Die RQ-4 Global Hawk fliegt etwa in 20 Kilometer Höhe ohne Pilot.

1 - 1,5  Tonnen Nutzlast.


Instead of visualizing a jet full of people, a jet full of poison.



Das Militär hat bereits mehr Flugzeuge als für dieses Geo-Engineering-Szenario erforderlich wären, hergestellt. Da der Klimawandel eine wichtige Frage der nationalen Sicherheit ist [Schwartz und Randall, 2003], könnte das Militär für die Durchführung dieser Mission mit bestehenden Flugzeugen zu minimalen Zusatzkosten sein.




Die künstliche Klima-Kontrolle durch GE


Dies sind die Ausbringung von Aerosolpartikeln in der Stratosphäre, sowie die Erhöhung der Wolkenhelligkeit in der Troposphäre mithilfe von künstlichen Kondensationskeimen.




Brisanz von Climate Engineering  (DFG)


Climate-Engineering wird bei Klimakonferenzen (z.B. auf dem Weltklimagipfel in Doha) zunehmend diskutiert. Da die Maßnahmen für die angestrebten Klimaziele bisher nicht greifen, wird Climate Engineering als alternative Hilfe in Betracht gezogen.





Umweltaktivistin und Trägerin des alternativen Nobelpreises Dr. Rosalie Bertell, berichtet in Ihrem Buch »Kriegswaffe Planet Erde« über die Folgewirkungen und Auswirkungen diverser (Kriegs-) Waffen..


Bild anklicken
Bild anklicken


Dieses Buch ist ein Muss für jeden Bürger auf diesem Planeten.


..Indessen gehen die Militärs ja selbst gar nicht davon aus, dass es überhaupt einen Klimawandel gibt, wie wir aus Bertell´s Buch wissen (Hamilton in Bertell 2011).


Sondern das, was wir als Klimawandel bezeichnen, sind die Wirkungen der immer mehr zunehmenden


und Eingriffe ins Erdgeschehen mittels Geoengineering, insbesondere durch die HAARP-ähnlichen Anlagen, die es inzwischen in aller Welt gibt..


Bild anklicken
Bild anklicken



Why in the World are they spraying 


Durch die bahnbrechenden Filme von Michael J. Murphy "What in the World Are They Spraying?" und "Why in the world are the Spraying?" wurden Millionen Menschen die Zerstörung durch SRM-Geoengineering-Projekte vor Augen geführt. Seitdem bilden sich weltweit Bewegungen gegen dieses Verbrechen.



Die Facebook Gruppe Global-Skywatch hat weltweit inzwischen schon über 90.000 Mitglieder und es werden immer mehr Menschen, die die Wahrheit erkennen und die "gebetsmühlenartig" verbreiteten Lügengeschichten der Regierung und Behörden in Bezug zur GE-Forschung zu Recht völlig hinterfragen. 


Bild anklicken: Untertitel in deutscher Sprache
Bild anklicken: Untertitel in deutscher Sprache





SRM Programme - Ausbringung durch Flugzeuge 




Die Frage die bleibt, ist die Antwort auf  Stratosphärische Aerosol- Injektions- Programme und die tägliche Umweltzer-störung auf unserem Planeten“




Die Arbeit von Brovkin et al. (2009) zeigt für ein Emissionsszenario ohne Emissionskontrolle, dass der Einsatz von RM für mehrere 1000 Jahre fortgesetzt werden muss, je nachdem wie vollständig der Treibhausgas-induzierte Strahlungsantrieb kompensiert werden soll.




Falls sich die Befürchtung bewahrheitet, dass eine Unterbrechung von RM-Maßnahmen zu abruptem Klimawandel führt, kann sich durch den CE-Einsatz ein Lock-in-Effekt ergeben. Die hohen gesamtwirtschaftlichen Kosten dieses abrupten Klimawandels würden sozusagen eine Weiterführung der RM-Maßnahmen erzwingen.







Neben den Studien von CSEPP (1992) und Robock et al. (2009), ist insbesondere die aktuelle Studie von McClellan et al. (2010) hervorzuheben. Für die Ausbringung mit Flugsystemen wird angenommen, dass das Material mit einer Rate von 0,03 kg/m freigesetzt wird. Es werden Ausbringungshöhen von 13 bis 30 km untersucht.





Bestehende kleine Düsenjäger, wie der F-15C Eagle, sind in der Lage in der unteren Stratosphäre in den Tropen zu fliegen, während in der Arktis größere Flugzeuge wie die KC-135 Stratotanker oder KC-10 Extender in der Lage sind, die gewünschten Höhen zu erreichen.



SRM Protest-Märsche gleichzeitig in circa 150 Städten - weltweit.


Geoengineering-Forschung als Plan B für eine weltweit verfehlte Klimapolik. 


Bild anklicken:
Bild anklicken:


Staaten führen illegale Wetter-Änderungs-Techniken als globales Experiment gegen den Klimawandel durch, geregelt über die UN, ausgeführt durch die NATO, mit militärischen Flugzeugen werden jährlich 10-20 Millionen Tonnen hoch giftiger Substanzen in den Himmel gesprüht..


Giftige Substanzen, wie Aluminium, Barium, Strontium, die unsere Böden verseuchen und die auch auf Dauer den ph-Wert des Bodens deutlich verändern würden. Es sind giftige Substanzen, wie Schwefel, welches die Ozonschicht systematisch zerstören würde. 






Weltweite  Protestmärsche gegen globale Geoengineering Experimente finden am 25. April 2015 in all diesen Städten gleichzeitig statt:




AUSTRALIEN - (Adelaide)

AUSTRALIEN - (Albury-Wodonga)

AUSTRALIEN - (Bendigo)

AUSTRALIEN - (Brisbane)

AUSTRALIEN - (Byron Bay)


AUSTRALIEN - (Canberra)


AUSTRALIEN - (Gold Coast)


AUSTRALIEN - (Melbourne)

AUSTRALIEN - (Newcastle)

AUSTRALIEN - (New South Wales, Byron Bay)


AUSTRALIEN - (Port Macquarie)

AUSTRALIEN - (South Coast NSW)

AUSTRALIEN - (South East Qeensland)

AUSTRALIEN - (Sunshine Coast)


AUSTRALIEN - (Tasmania)

BELGIEN - (Brüssel)

BELGIEN - (Brüssel Group)

BRASILIEN - (Curitiba)

BRASILIEN - (Porto Allegre)


Kanada - Alberta - (Calgary)

Kanada - Alberta - (Edmonton)

Kanada - Alberta - (Fort Saskatchewan)

Kanada - British Columbia - (Vancouver Group)

Kanada - British Columbia - (Victoria)

Kanada - Manitobak - (Winnipeg)

Kanada – Neufundland

Kanada - Ontario - (Barrie)

Kanada - Ontario - (Cambridge)

Kanada - Ontario - (Hamilton)

Kanada - Ontario - (London)

Kanada - Ontario - (Toronto)

Kanada - Ontario  - (Ottawa)

Kanada - Ontario - (Windsor)

Kanada - Québec - (Montreal)

KOLUMBIEN - (Medellin)


KROATIEN - (Zagreb)

DÄNEMARK - (Aalborg)

DÄNEMARK - (Kopenhagen)

DÄNEMARK - (Odense)

ESTLAND - (Tallinn)

Ägypten (Alexandria)

FINNLAND - (Helsinki)




DEUTSCHLAND - (Düsseldorf)




Ungarn (Budapest)

IRLAND - (Cork City)

IRLAND - (Galway)

ITALIEN - (Milano)

Italien - Sardinien - (Cagliari)

MAROKKO - (Rabat)


NIEDERLANDE - (Groningen)

NEUSEELAND - (Auckland)

NEUSEELAND - (Christchurch)

NEUSEELAND - (Hamilton)


NEUSEELAND - (New Plymouth)



NEUSEELAND - (Wellington)

NEUSEELAND - (Whangerei)




PORTUGAL - (Lissabon)

SERBIEN - (Glavni Gradovi)



SPANIEN - (Barcelona)

SPANIEN - (La Coruna)

SPANIEN - (Ibiza)

SPANIEN - (Murcia)

SPANIEN - (San Juan - Alicante)

SCHWEDEN - (Gothenburg)

SCHWEDEN - (Stockholm)

SCHWEIZ - (Bern)

SCHWEIZ - (Genf)

SCHWEIZ - (Zürich)

UK - ENGLAND - (London)

UK - ISLE OF MAN - (Douglas)

UK - Lancashir - (Burnley)

UK - Scotland - (Glasgow)

UK - Cornwall - (Truro)

USA - Alaska - (Anchorage)

USA - Arizona - (Flagstaff)

USA - Arizona - (Tucson)

USA - Arkansas - (Hot Springs)

USA - Kalifornien - (Hemet)

USA - CALIFORINA - (Los Angeles)

USA - Kalifornien - (Redding)

USA - Kalifornien - (Sacramento)

USA - Kalifornien - (San Diego)

USA - Kalifornien - (Santa Cruz)

USA - Kalifornien - (San Francisco)

USA - Kalifornien - Orange County - (Newport Beach)

USA - Colorado - (Denver)

USA - Connecticut - (New Haven)

USA - Florida - (Boca Raton)

USA - Florida - (Cocoa Beach)

USA - Florida - (Miami)

USA - Florida - (Tampa)

USA - Georgia - (Gainesville)

USA - Illinois - (Chicago)

USA - Hawaii - (Maui)

USA - Iowa - (Davenport)

USA - Kentucky - (Louisville)

USA - LOUISIANA - (New Orleans)

USA - Maine - (Auburn)

USA - Maryland - (Easton)

USA - Massachusetts - (Worcester)

USA - Minnesota - (St. Paul)

USA - Missouri - (St. Louis)

USA - Montana - (Missoula)

USA - NEVADA - (Black Rock City)

USA - NEVADA - (Las Vegas)

USA - NEVADA - (Reno)

USA - New Jersey - (Red Bank)

USA - New Mexico (Northern)

USA - NEW YORK - (Ithaca)

USA - NEW YORK - (Long Island)

USA - NEW YORK - (New York City)

USA - NORTH CAROLINA - (Asheville)

USA - NORTH CAROLINA - (Charlotte)

USA - NORTH CAROLINA - (Greensboro)

USA - Oregon - (Ashland)

USA - Oregon - (Portland)

USA - Pennsylvania - (Harrisburg)

USA - Pennsylvania - (Pittsburgh)

USA - Pennsylvania - (West Chester)

USA - Pennsylvania - (Wilkes - Barre)

USA - SOUTH CAROLINA - (Charleston)

USA - Tennessee - (Memphis)

USA - Texas - (Austin)

USA - Texas - (Dallas / Metroplex)

USA - Texas - (Houston)

USA - Texas - (San Antonio)

USA - Vermont - (Burlington)

USA - Virginia - (Richmond)

USA - Virginia - (Virginia Beach)

USA - WASHINGTON - (Seattle)

USA - Wisconsin - (Milwaukee)


Bild anklickem: Holger Strom Webseite
Bild anklickem: Holger Strom Webseite


Der Film zeigt eindrucksvolle Beispiele, beginnend beim Einsatz der Atombomben mit ihren schrecklichen Auswirkungen bis hin zu den gesundheitszerstörenden, ja tödlichen Hinterlassenschaften der Atomenergienutzung durch die Energiewirtschaft. Eine besondere Stärke des Films liegt in den Aussagen zahlreicher, unabhängiger Fachleute. Sie erläutern mit ihrem in Jahrzehnten eigener Forschung und Erfahrung gesammelten Wissen Sachverhalte und Zusammenhänge, welche die Befürworter und Nutznießer der Atomtechnologie in Politik, Wirtschaft und Militärwesen gerne im Verborgenen halten wollen.


Prof. Dr. med. Dr. h. c. Edmund Lengfelder



Nicht viel anders gehen Politiker/ Abgeordnete des Deutschen Bundestages mit der hoch toxischen riskanten SRM Geoengineering-Forschung um, um diese riskante Forschung durch die Parlamente zu bekommen.


Es wird mit gefährlichen Halbwissen und Halbwahrheiten gearbeitet. Sie werden Risiken vertuschen, verdrehen und diese Experimente als das einzig Richtige gegen den drohenden Klimawandel verkaufen. Chemtrails sind Stratosphärische Aerosol Injektionen, die  illegal auf globaler Ebene stattfinden, ohne jeglichen Parlament-Beschluss der beteiligten Regierungen.


Geoengineering-Projekte einmal begonnen, sollen für Jahrtausende fortgeführt werden - ohne Unterbrechung (auch bei finanziellen Engpässen oder sonstigen Unruhen) um nicht einen Umkehreffekt  auszulösen.


Das erzählt Ihnen die Regierung natürlich nicht, um diese illegale hochgefährliche RM Forschung nur ansatzweise durch die Parlamente zu bringen.


Spätestens seit dem Atommüll-Skandal mit dem Forschungs-Projekt ASSE wissen wir Bürger/Innen, wie Politik und Wissenschaft mit Forschungs-Risiken umgehen.. Diese Gefahren und Risiken werden dann den Bürgern einfach verschwiegen. 



Am 30. September 2012 ist eine neue Internetplattform zu Climate Engineering online gegangen  


Die Plattform enthält alle neuen Infos -Publikationen, Veranstaltungen etc. zu Climate-Engineering.





Gezielte Eingriffe in das Klima?

Eine Bestandsaufnahme der Debatte zu Climate Engineering

Kieler Earth Institute



Climate Engineering:

Ethische Aspekte

Karlsruher Institut für Technologie



Climate Engineering:

Chancen und Risiken einer Beeinflussung der Erderwärmung. Naturwissenschaftliche und technische Aspekte

Leibniz-Institut für Troposphärenforschung, Leipzig


Climate Engineering:

Wirtschaftliche Aspekte 

Kiel Earth Institute



Climate Engineering:

Risikowahrnehmung, gesellschaftliche Risikodiskurse und Optionen der Öffentlichkeitsbeteiligung

Dialogik Stuttgart



Climate Engineering:

Instrumente und Institutionen des internationalen Rechts

Universität Trier



Climate Engineering:

Internationale Beziehungen und politische Regulierung

Wissenschaftszentrum Berlin für Sozialforschung




Illegale Atmosphären-Experimente finden in Deutschland  seit  2012 „täglich“ am Himmel statt.


Chemtrails  -  Verschwörung am Himmel ? Wettermanipulation unter den Augen der Öffentlichkeit


Auszug aus dem Buch: 


Ich behaupte, dass in etwa 2 bis 3 mal pro Woche, ungefähr ein halbes Dutzend  von frühmorgens bis spätabends in einer Art und Weise Wien überfliegen, die logisch nicht erklärbar ist. Diese Maschinen führen über dem Stadtgebiet manchmal auffällige Steig- und Sinkflüge durch , sie fliegen Bögen und sie drehen abrupt ab. Und sie hinterlassen überall ihre dauerhaft beständigen Kondensstreifen, welche auch ich Chemtrails nenne. Sie verschleiern an manchen Tagen ganz Wien und rundherum am Horizont ist strahlend blauer ...
Hier in diesem Buch  aus dem Jahr 2005 werden die anfänglichen stratosphärischen SRM-Experimente am Himmel beschrieben... inzwischen fliegen die Chemie-Bomber ja 24 h Nonstop, rund um die Uhr.





Weather Modification Patente


Umfangreiche Liste der Patente











Von Pat Mooney - Er ist Gründer und Geschäftsführer der kanadischen Umweltschutzorganisation ETC Group in Ottawa.


Im Jahr 1975 tat sich der US-Geheimdienst CIA mit Newsweek zusammen und warnte vor globaler Abkühlung. Im selben Jahr wiesen britische Wissenschaftler die Existenz eines Lochs in der Ozonschicht über der Antarktis nach und die UN-Vollversammlung befasste sich mit identischen Anträgen der Sowjetunion und der USA für ein Verbot von Klimamanipulationen, die militärischen Zwecken dienen. Dreißig Jahre später redeten alle - auch der US-Präsident über globale Erwärmung. 


Wissenschaftler warnten, der Temperaturanstieg über dem arktischen Eis  und im sibirischen Permafrost könnte in die Klimakatastrophe führen, und der US-Senat erklärte sich bereit , eine Vorlage zu prüfen, mit der Eingriffe in das Klima erlaubt werden sollten. 


Geo-Engineering ist heute Realität. Seit dem Debakel von Kopenhagen bemüht sich die große Politik zusammen mit ein paar Milliardären verstärkt darum, großtechnische Szenarien zu prüfen und die entsprechenden Experimente durchzuführen.


Seit Anfang 2009 überbieten sich die Medien mit Geschichten über Geoengineering als "Plan B". Wissenschaftliche Institute und Nobelpreisträger legen Berichte und Anträge vor, um die Politik zur Finanzierung von Feldversuchen zu bewegen. Im britischem Parlament wie im US-Kongress haben die Anhörungen schon begonnen. Anfang 2010 berichteten Journalisten, Bill Gates investiere privat in Geoengineering-Forschung und werde bei Geoengineering-Patenten zur Senkung der Meerestemperatur und zur Steuerung von Hurrikanen sogar als Miterfinder genannt. Unterdesssen hat Sir Richard Branson - Gründer und Besitzer der Fluglinie Virgin Air - verkündet, er habe eine Kommandozentrale für den Klimakrieg eingerichtet und sei für alle klimatechnischen Optionen offen. Zuvor hatte er 25 Millionen Dollar für eine Technik ausgesetzt, mit der sich die Stratosphäre reinigen lässt. 


Einige der reichsten Männer der Welt (z.B. Richard Branson und Bill Gates ) und die mächtigsten Konzerne (z.B. Shell , Boeing ) werden immer beteiligt.


Geoengineering Karte - ETC Group


ETC Group veröffentlicht eine Weltkarte über Geoengineering-Experimente, die groß angelegte Manipulation des Klimas unserer Erde.  Zwar gibt es keine vollständige Aufzeichnung von Wetter und Klima-Projekten in Dutzenden von Ländern, diese Karte ist aber der erste Versuch, um den expandierenden Umfang der Forschungs-Experimente zu dokumentieren. 


Fast 300 Geo-Engineering-Projekte / Experimente sind auf der Karte vertreten, die zu den verschiedenen Arten von Klima-Änderungs-Technologien gehören.

Einfach anklicken und vergrößern..
Einfach anklicken und vergrößern..


Aus der Sicht der reichen Länder (und ihrer Unternehmen) erscheint Geoengineering einfach perfekt. Es ist machbar. Es ist (relativ) billig. Und es erlaubt der Industrie, den Umbau unserer Wirtschaft und Produktionsweise für überflüssig zu erklären.


Das wichtigste aber ist: Geoengineering braucht keinerlei internationale Übereinkunft. Länder, Unternehmen, ja sogar superreiche Geo-Piraten können es auf eigene Faust durchziehen. Eine bescheidene >Koalition der Willigen< genügt vollauf, und eine Handvoll Akteure kann den Planeten nach Belieben umbauen.


Damit wir es nicht vergessen:


Seit 1945  führten die USA, die UdSSR, England, Frankreich und später auch China mehr als 2000 Atomtests durch – über und unter der Erde und ohne Rücksicht auf die zu erwartenden Auswirkungen auf Gesundheit und Umwelt weltweit. Niemand wurde um Erlaubnis gefragt. Wenn das Weltklima zu kippen droht, werden sie da wirklich vor einseitigen Entscheidungen zurückschrecken? 




Warum ist Geo-Engineering nicht akzeptabel..?


SRM Geoengineering kann nicht im Labor getestet werden: Es ist keine experimentelle Labor-Phase möglich, um einen spürbaren Einfluss auf das Klima zu haben. Geo-Engineering muss massiv eingesetzt werden.


Experimente oder Feldversuche entsprechen tatsächlich den Einsatz in der realen Welt, da kleine Tests nicht die Daten auf Klimaeffekte liefern.


Auswirkungen für die Menschen und die biologische Vielfalt würden wahrscheinlich sofort massiv und möglicherweise irreversibel sein.





Hände weg von Mutter Erde (HOME) ist eine weltweite Kampagne, um unserem kostbaren Planeten Erde, gegen die Bedrohung durch Geo-Engineering-Experimente zu verteidigen. Gehen Sie mit uns, um eine klare Botschaft an die Geo-Ingenieure und die Regierungen weltweit zu senden, dass unsere Erde kein ein Labor ist.



Liste der (SRM) Geoengineering-Forschung

Hier anklicken:
Hier anklicken: research funding 10-9-13.xls


Weltweite Liste der Geoengineering-Forschung SRM Forschungs Länder: 


Großbritannien, Vereinigte Staaten Amerika, Deutschland, Frankreich, Norwegen, Finnland, Österreich und Japan.



In "NEXT BANG!" beschreibt Pat Money neue Risikotechnologien, die heute von Wissenschaftlern, Politikern und mächtigen Finanziers aktiv für den kommerziellen Einsatz vorbereitet werden:


Geo-Engineering, Nanotechnologie, oder die künstliche >Verbesserung< des menschlichen Körpers.


"Die  Brisanz des Buches liegt darin, dass es zeigt, wie die Technologien, die unsere Zukunft bestimmen könnten, heute zum großflächigen Einsatz vorbereitet werden – und das weitgehend unbemerkt von der Öffentlichkeit. Atomkraft, toxische Chemikalien oder genmanipulierte Organismen konnten deshalb nicht durch demokratische Entscheidungen verhindert werden, weil hinter ihnen bereits eine zu große ökonomische und politische Macht stand, als ihre Risiken vielen Menschen erst bewusst wurden.


Deshalb dürfen wir die Diskussion über Geoengineering, Nanotechnologie, synthetische Biologie  und die anderen neuen Risikotechnologien nicht länger den selbsternannten Experten überlassen. Die Entscheidungen über ihren künftigen Einsatz fallen jetzt - es ist eine Frage der Demokratie, dass wir alle dabei mitreden."


Ole von UexküllDirektor der Right Livelihood Award Foundation, die den Alternativen Nobelpreis vergibt



Vanishing of the Bees - No Bees, No Food !


Verschwinden der Bienen  - Keine Bienen, kein Essen !






Solar Radiation Management = SRM

Es ist zu beachten, dass SRM Maßnahmen zwar auf kurzer Zeitskala wirksam werden können, die Dauer ihres Einsatzes aber an der Lebensdauer des CO-2 gebunden ist, welches mehrere Tausend Jahre beträgt.


CDR- Maßnahmen hingegen müssten über einen sehr langen Zeitraum (viele Jahrzehnte) aufgebaut werden, ihr Einsatz könnte allerdings beendet werden, sobald die CO2 Konzentration wieder auf ein akzeptables Niveau gesenkt ist. Entsprechende Anstrengungen vorausgesetzt, könnte dies bereits nach einigen Hundert Jahren erreicht sein.


CDR Maßnahmen: sind relativ teuer und arbeiten viel zu langsam. Bis sie wirken würden, vergehen viele Jahrzehnte


Solar Radiation Management SRM Maßnahmen: billig.. und schnell..



Quelle: Institut für Technikfolgenabschätzung






Solar Radiation Management = SRM


Ironie der Geoengineering Forschung:


Ein früherer SRM Abbruch hätte einen abrupten sehr heftigen Klimawandel zur Folge, den wir in dieser Schnelligkeit und heftigen Form nie ohne diese SRM Maßnahmen gehabt hätten. 


Das, was Regierungen mit den globalen GEO-ENGINEERING-INTERVENTIONEN verhindern wollten, genau das wären dann die globalen Folgeschäden bei der frühzeitigen Beendigung der SRM Forschungs-Interventionen.


Wenn sie diese hoch giftigen SAI - Programme  aus wichtigen Gründen vorher abbrechen müssten, droht uns ein abrupter Klimawandel, der ohne diese GE-Programme nie dagewesen wäre. 


Das bezeichne ich doch mal  als wahre  reale Satire..