An Editorial Essay


Fossil fuel burning releases about 25 Pg of CO2 per year into the atmosphere, which leads to global warming (Prentice et al., 2001). However, it also emits 55 Tg S as SO2 per year (Stern, 2005), about half of which is converted to sub-micrometer size sulfate particles, the remainder being dry deposited. Recent research has shown that the warming of earth by the increasing concentrations of CO2 and other greenhouse gases is partially countered by some backscattering to space of solar radiation by the sulfate particles, which act as cloud condensation nuclei and thereby influence the micro-physical and optical properties of clouds, affecting regional precipitation patterns, and increasing cloud albedo (e.g., Rosenfeld, 2000; Ramanathan et al., 2001; Ramaswamy et al., 2001). Anthropogenically enhanced sulfate particle concentrations thus cool the planet, offsetting an uncertain fraction of the anthropogenic increase in greenhouse gas warming. However, this fortunate coincidence is “bought” at a substantial price. According to theWorld Health Organization, the pollution particles affect health and lead to more than 500,000 premature deaths per year worldwide (Nel, 2005). Through acid precipitation and deposition, SO2 and sulfates also cause various kinds of ecological damage. This creates a dilemma for environmental policy makers, because the required emission reductions of SO2, and also anthropogenic organics (except black carbon), as dictated by health and ecological considerations, add to global warming and associated negative consequences, such as sea level rise, caused by the greenhouse gases. In fact, after earlier rises, global SO2 emissions and thus sulfate loading have been declining at the rate of 2.7% per year, potentially explaining the observed reverse from dimming to brightening in surface solar radiation at many stations worldwide (Wild et al., 2005). The corresponding increase in solar radiation by 0.10% per year from 1983 to 2001 (Pinker et al., 2005) contributed to the observed climatewarming during the past decade. According to model calculations by Brasseur and Roeckner (2005), complete improvement in air quality could lead to a decadal global average surface air temperature increase by 0.8 K on most continents and 4 K in the Arctic. Further studies by Andreae et al. (2005) and Stainforth et al. (2005) indicate that global average climate warming during this century may even surpass the highest values in the projected IPCC global warming range of 1.4–5.8 ◦C (Cubasch et al., 2001).


By far the preferred way to resolve the policy makers’ dilemma is to lower the emissions of the greenhouse gases. However, so far, attempts in that direction have been grossly unsuccessful. While stabilization of CO2 would require a 60–80% reduction in current anthropogenicCO2 emissions,worldwide they actually increased by 2% from 2001 to 2002 (Marland et al., 2005), a trend, which probably will not change at least for the remaining 6-year term of the Kyoto protocol, further increasing the required emission restrictions. Therefore, although by far not the best solution, the usefulness of artificially enhancing earth’s albedo and thereby cooling climate by adding sunlight reflecting aerosol in the stratosphere (Budyko, 1977; NAS, 1992) might again be explored and debated as a way to defuse the Catch-22 situation just presented and additionally counteract the climate forcing of growing CO2 emissions. This can be achieved by burning S2 or H2S, carried into the stratosphere on balloons and by artillery guns to produce SO2. To enhance the residence time of the material in the stratosphere and minimize the required mass, the reactants might be released, distributed over time, near the tropical upward branch of the stratospheric circulation system. In the stratosphere, chemical and micro-physical processes convertSO2 into sub-micrometer sulfate particles. This has been observed in volcanic eruptions e.g., Mount Pinatubo in June, 1991, which injected some 10 Tg S, initially as SO2, into the tropical stratosphere (Wilson et al., 1993; Bluth et al., 1992). In this case enhanced reflection of solar radiation to space by the particles cooled the earth’s surface on average by 0.5 ◦C in the year following the eruption (Lacis and Mishchenko, 1995). Although climate cooling by sulfate aerosols also occurs in the troposphere (e.g., Ramaswamy et al., 2001), the great advantage of placing reflective particles in the stratosphere is their long residence time of about 1–2 years, compared to a week in the troposphere. Thus, much less sulfur, only a few percent, would be required in the stratosphere to achieve similar cooling as the tropospheric sulfate aerosol (e.g., Dickinson, 1996; Schneider, 1996; NAS, 1992; Stern, 2005). This would make it possible to reduce air pollution near the ground, improve ecological conditions and reduce the concomitant climate warming. The main issue with the albedo modification method is whether it is environmentally

safe, without significant side effects.


We will next derive some useful metrics. First, a loading of 1 Tg S in the stratosphere yields a global average vertical optical depth of about 0.007 in the visible and corresponds to a global average sulfur mixing ratio of ∼1 nmol/mole, about six times more than the natural background (Albritton et al., 2001). Second, to derive the radiative forcing caused by the presence of 1 Tg S in the stratosphere, we adopt a simple approach based on the experience gained from the Mount Pinatubo volcanic eruption. For the Mount Pinatubo eruption, Hansen et al. (1992) calculated a radiative cooling of 4.5 W/m2 caused by 6 Tg S, the amount of S that remained in the stratosphere as sulfate six months after the eruption from initially 10 Tg S (Bluth et al., 1992). Linear downscaling results in a sulfate climate cooling efficiency of 0.75 W/m2 per Tg S in the stratosphere. The estimated annual cost to put 1 Tg S in the stratosphere, based on information by the NAS (1992), at that time would have been US $25 billion (NAS, 1992; Ron Nielsen, personal communication).


Thus, in order to compensate for enhanced climate warming by the removal of anthropogenic aerosol (an uncertain mean value of 1.4 W/m2, according to Crutzen and Ramanathan (2003)), a stratospheric sulfate loading of 1.9 Tg S would be required, producing an optical depth of 1.3%. This can be achieved by a continuous deployment of about 1–2 Tg S per year for a total price of US $25–50 billion, or about $25–50 per capita in the affluent world, for stratospheric residence times of 2 to 1 year, respectively. The cost should be compared with resulting environmental and societal benefits, such as reduced rates of sea level rise. Also, in comparison, current annual global military expenditures approach US$1000 billion, almost half in the U.S.A. The amount of sulfur that is needed is only 2–4% of the current input of 55 Tg S/year (Stern, 2005). Although the particle sizes of the artificial aerosols are smaller than those of the volcanic aerosol, because of greater continuity of injections in the former, the radiative forcings are rather similar for effective particle radii ranging between 0.1 and 1 μm(see Table 2.4, page 27, Lacis and Mishchenko, 1995). However the smaller particles have a longer stratospheric residence time, so that less material needs to be injected to cool climate, compared to the volcanic emission case. It should be mentioned that Anderson et al. (2003a,b) state that the radiative cooling by the aerosol could be much larger than the figure of 1.4 W/m2, derived by Crutzen and Ramanathan (2003), which is based on the assumption of constant relative humidity in the troposphere. If Anderson et al. (2003a,b) are indeed correct, the result might be a stronger climate heating from air pollution cleanup than derived above (see also Andreae et al., 2005).


To compensate for a doubling of CO2, which causes a greenhouse warming of 4 W/m2, the required continuous stratospheric sulfate loading would be a sizeable 5.3 Tg S, producing an optical depth of about 0.04. The Rayleigh scattering optical depth at 0.5 μm is about 0.13, so that some whitening on the sky, but also colorful sunsets and sunrises would occur. It should be noted, however, that considerable whitening of the sky is already occurring as a result of current air pollution in the continental boundary layer.


Locally, the stratospheric albedo modification scheme, even when conducted at remote tropical island sites or from ships, would be a messy operation. An alternative may be to release a S-containing gas at the earth’s surface, or better from balloons, in the tropical stratosphere. A gas one might think of is COS, which may be the main source of the stratospheric sulfate layer during low activity volcanic periods (Crutzen, 1976), although this is debated (Chin and Davis, 1993). However, about 75% of the COS emitted will be taken up by plants, with unknown long-term ecological consequences, 22% is removed by reaction with OH, mostly in the troposphere, and only 5% reaches the stratosphere to produce SO2 and sulfate particles (Chin and Davis, 1993). Consequently, releasing COS at the ground is not recommended. However, it may be possible to manufacture a special gas that is only processed photochemically in the stratosphere to yield sulfate. The compound should be non-toxic, insoluble in water, non-reactive with OH, it should have a relatively short lifetime of less than about 10 years, and should not significantly contribute to greenhouse warming, which for instance disqualifies SF6.


The albedo modification scheme presented here has been discussed before, however, without linking opposite climate warming and improved air quality considerations. Instead of sulfur, it has also been proposed to launch reflecting small balloons or mirrors, or to add highly reflective nano-particles of other material than sulfur (Teller et al., 1997; Keith, 2000). An interesting alternative could be to release soot particles to create minor “nuclear winter” conditions. In this case earth’s albedo would actually decrease, but surface temperatures would, nevertheless, decline. Only 1.7% of the mass of sulfur would be needed to effect similar cooling at the earth’s surface, making the operations much cheaper and less messy. However, because soot particles absorb solar radiation very efficiently, differential solar heating of the stratosphere could change its dynamics. It would, however, also counteract stratospheric cooling by increasing CO2 and may even prevent the formation of polar stratospheric cloud particles, a necessary condition for ozone hole formation.


Since it is likely that the greenhouse warming is substantially negated by the cooling effect of anthropogenic aerosol in the troposphere, by 25–65% according to an estimate by Crutzen and Ramanathan (2003), but possibly greater (Anderson et al., 2003a,b), air pollution regulations, in combination with continued growing emissions of CO2, may bring the world closer than is realized to the danger described by Schneider (1996): “Supposing, a currently envisioned low probability but high consequence outcome really started to unfold in the decades ahead (for example, 5 ◦Cwarming in this century) which Iwould characterize as having potential catastrophic implications for ecosystems . . . Under such a scenario, we would simply have to practice geo-engineering . . .”


There are some worrying indications of potentially large climate changes: for instance the locally drastic atmospheric warming by up to 3 W/m2 per decade in Alaska due to surface albedo decreases through tree and shrub expansion (Chapin III et al., 2005), the projected increase in surface temperatures by 2–3 K by the middle of this century in Africa even with the Kyoto protocol in force (B. Hewitson, University of Cape Town, quoted by Cherry, 2005) with great impacts on biodiversity, and potentially also the 30% slowdown in the north Atlantic overturning circulation during the past half century (Bryden et al., 2005). Given the grossly disappointing international political response to the required greenhouse gas emissions, and further considering some drastic results of recent studies (Andreae et al., 2005; Stainforth et al., 2005), research on the feasibility and environmental consequences of climate engineering of the kind presented in this paper, which might need to be deployed in future, should not be tabooed. Actually, considering the great importance of the lower stratosphere/upper troposphere (LS/UT) for the radiation balance, chemistry, and dynamics of the atmosphere, its research should anyhow be intensified. For instance, it is not well known how much of the large quantities of anthropogenic SO2 emitted at ground level reaches the LS/UT to produce sulfate particles, what regulates temperatures, water vapour concentrations and cirrus cloud formation in the LS/UT region, and how these factors may change in response to growing CO2 concentrations, which are already 30–40% higher than ever experienced during the past 650,000 years (Siegenthaler et al., 2005). Progress in the understanding of the complicated earth climate system is generally slow. Therefore it is recommended to intensify research in order to challenge the climate modification idea here presented, starting with model investigations and, dependent on their outcome, followed step by step by small scale atmospheric tests. Also, as natural sulfur injection experiments occur intermittently in the form of explosive volcanic eruptions, often at low latitudes, they provide excellent opportunities for model development and testing (e.g., Robock, 2000).


Researchers at the Lawrence Livermore Laboratory are so far the only ones who have modelled the stratospheric albedo modification scheme. In a first study, Govindasamy and Caldeira (2000) simulated this by reducing the solar luminosity by 1.8%, to balance future climate warming by a doubling of CO2. Although solar radiative forcing has a different physics and spatial distribution than the infrared effects caused by CO2, the model results indicated that the global temperature response by both perturbations at the Earth’ surface and atmosphere largely cancelled out. Although these preliminary model results would be in favor a stratospheric sulfur injection operation, the required annual S inputs are large, so that the possibility of adverse environmental side effects needs to be fully researched before the countermeasure to greenhouse warming is attempted. What has to be done first, is to explore whether using a sulfur injection scheme with advanced micro-physical and radiation process descriptions will showsimilar model results as the simple solar luminosity adjustment scheme of Govindasamy and Caldeira (2000). Further studies, following those conducted by Govindasamy (2003), should address the biological effects of the albedo modification scheme. As already mentioned, injection of soot may be an alternative, but in need of critical analysis. Such studies by themselves, even when the experiment is never done, will be very informative.


Among possible negative side effects, those on stratospheric ozone first spring to mind. Fortunately, in this case one can build on the experience with past volcanic eruptions, such as El Chich´on in 1982 and Mount Pinatubo in 1991, which injected 3–5 Tg S (Hofmann and Solomon, 1989) and 10 Tg S (Bluth et al., 1992), respectively, in the stratosphere. Local ozone destruction in the El Chich´on case was about 16% at 20 km altitude at mid-latitudes (Hofmann and Solomon, 1989). For Mount Pinatubo, global column ozone loss was about 2.5% (Kinnison et al., 1994). For the climate engineering experiment, in which the cooling effect of all tropospheric anthropogenic aerosol is removed, yielding a radiative heating of 1.4 W/m2 (Crutzen and Ramanathan, 2003), a stratospheric loading of almost 2 Tg S, and an input of 1–2 Tg S/yr is required, depending on stratospheric residence times. In this case, stratospheric sulfate injections would be 5 times less than after the Mount Pinatubo eruption, leading to much smaller production of ozone-destroying Cl and ClO radicals, whose formation depends on particle surface-catalyzed heterogeneous reactions (Wilson, 1993). Compensating for a CO2 doubling would lead to larger ozone loss but not as large as after Mount Pinatubo. Furthermore, the amounts of stratospheric chlorine radicals, coming from past production of the chloro-fluoro-carbon gases, are now declining by international regulation, so that ozone will significantly recover by the middle of this century. If instead of SO2, elemental carbon would be injected in the stratosphere, higher temperatures might prevent the formation of polar stratospheric ice particles and thereby hinder the formation of ozone holes. This and the consequences of soot deposition on polar glaciers should be checked by model calculations.


In contrast to the slowly developing effects of greenhouse warming associated with anthropogenic CO2 emissions, the climatic response of the albedo enhancement experiment would start taking effect within about half a year, as demonstrated by the Mount Pinatubo eruption (Hansen et al., 1992). Thus, provided the technology to carry out the stratospheric injection experiment is in place, as an escape route against strongly increasing temperatures, the albedo adjustment scheme can become effective at rather short notice, for instance if climate heats up by more than 2 ◦C globally or when the rates of temperatures increase by more than 0.2 ◦C/decade), i.e. outside the so-called “tolerable window” for climate warming (e.g., Bruckner and Schellnhuber, 1999). Taking into account the warming of climate by up to 1 ◦C by air pollution reduction (Brasseur and Roeckner, 2005), the tolerable window for greenhouse gas emissions might be as low as 1 ◦C, not even counting positive biological feedbacks. As mentioned before, regionally more rapid climate changes are already happening in the Arctic (Chapin et al., 2005) or are in petto for Africa (Cherry, 2005). Already major species extinctions by current climate warming have been reported by Pounds et al. (2005) and Root et al. (2003). If sizeable reductions in greenhouse gas emissions will not happen and temperatures rise rapidly, then climatic engineering, such as presented here, is the only option available to rapidly reduce temperature rises and counteract other climatic effects. Such a modification could also be stopped on short notice, if undesirable and unforeseen side effects become apparent, which would allow the atmosphere to return to its prior state within a few years. There is, therefore, a strong need to estimate negative, as well

as positive, side effects of the proposed stratospheric modification schemes. If positive effects are greater than the negative effects, serious consideration should be given to the albedo modification scheme.


Nevertheless, again I must stress here that the albedo enhancement scheme should only be deployed when there are proven net advantages and in particular when rapid climate warming is developing, paradoxically, in part due to improvements in worldwide air quality. Importantly, its possibility should not be used to justify inadequate climate policies, but merely to create a possibility to combat potentially drastic climate heating (e.g. Andreae et al., 2005; Stainforth et al., 2005; Crutzen and Ramanathan, 2003; Anderson et al., 2003a,b). The chances of unexpected climate effects should not be underrated, as clearly shown by the sudden and unpredicted development of the antarctic ozone hole. Current CO2 concentrations are already 30–40% larger than at any time during the past 650,000 years (Siegenthaler et al., 2005). Climate heating is known to be particularly strong

in arctic regions (Chapin et al., 2005), which may trigger accelerated CO2 and CH4 emissions in a positive feedback mode. Earth system is increasingly in the non-analogue condition of the Anthropocene.


Reductions in CO2 and other greenhouse gas emissions are clearly the main priorities (Socolowet al., 2004; Lovins, 2005). However, this is a decades-long process and so far there is little reason to be optimistic. There is in fact a serious additional issue. Should the proposed solutions to limit CO2 emissions prove unsuccessful and should CO2 concentrations rise to high levels with risk of acidification of the upper ocean waters, leading to dissolution of calcifying organisms (Royal Society, 2005; Orr et al., 2005), underground CO2 sequestration (Lackner, 2003), if proven globally significant, will be needed to bring down atmospheric CO2 concentrations. However, that kind of sequestration does not allow for rapid remedial response. Reforestation could do so, but has its own problems. A combination of efforts may thus be called for, including the stratospheric albedo enhancement scheme.



In conclusion:


The first modelling results and the arguments presented in this paper call for active scientific research of the kind of geo-engineering, discussed in this paper. The issue has come to the forefront, because of the dilemma facing international policy makers, who are confronted with the task to clean up air pollution, while simultaneously keeping global climate warming under control. Scientific, legal, ethical, and societal issues, regarding the climate modification scheme are many (Jamieson, 1996; Bodansky, 1996). Building trust between scientists and the general public would be needed to make such a large-scale climate modification acceptable, even if it would be judged to be advantageous. Finally, I repeat: the very best would be if emissions of the greenhouse gases could be reduced so much that the stratospheric sulfur release experiment would not need to take place. Currently, this looks like a pious wish.





Thanks go to many colleagues, in particular Ron Nielsen for advice on cost estimates, and to him, and colleagues V. Ramanathan, Jos Lelieveld, Carl Brenninkmeijer, Mark Lawrence, Yoya Joseph, and Henning Rodhe for advice and criticism on this paper. Part of this study was conducted during a stay at the International Institute of Advanced Systems Analysis (IIASA) in Laxenburg, Austria and discussed with Bob Ayres and Arnulf Grübler.





Albritton, D. L. et al.: 2001, ‘Technical Summary, in Climatic Change 2001, The Scientific Basis, Intergovernmental Panel for Climate Change’, in Houghton, J. T. et al. (eds.), Cambridge University Press, United Kingdom and New York, NY, USA.


Anderson, T. L. et al.: 2003a, ‘Climate forcing by aerosols-A hazy picture’, Science 300, 1103–1104.


Anderson, T. L. et al.: 2003b, ‘Response to P. J. Crutzen and V. Ramanathan, op cited’, Science 302, 1680–1681.


Andreae, M. O., Jones, C. D., and Cox, P. M.: 2005, ‘Strong present-day aerosol cooling implies a hot future’, Nature 435, 1187–1190.


Bluth, G. J. S., Doiron, S. D., Schnetzler, C. C., Krueger, A. J., and Walter L. S.: 1992, ‘Global

tracking of the SO2 clouds from the June 1991 Mount Pinatubo eruptions’, Geophys. Res. Lett. 19, 151–154.


Bodansky, D.: 1996, ‘May we engineer the climate?’, Clim. Change 33, 309–321.


Brasseur, G. P. and Roeckner, E.: 2005, ‘Impact of improved air quality on the future evolution of climate’, Geophys. Res. Letters 32, L23704, doi:10.1029/2005GL023902.


Bryden, H. L., Longworth, H. R., and Cunningham, S. A.: 2005, ‘Slowing of the Atlantic meridional overturning circulation at 25 N’, Nature 438, 655–657.


Bruckner, T. and Schellnhuber, H. J.: 1999, ‘Climate Change Protection: The Tolerable Windows Approach’, IPTS Report 34, May 1999, 6.


Budyko, M. I.: 1977, ‘Climatic Changes, American Geophysical Society’,Washington, D.C., 244 pp.


Chapin III, F. S. et al.: 2005, ‘Role of land-surface changes in Arctic summer warming’, Science 310, 657–660.


Cherry, M.: 2005, ‘Ministers agree to act on warnings of soaring temperatures in Africa’, Nature 437, 1217.


Chin, M. and Davis, D. D.: 1993, ‘Global sources and sinks of OCS and CS2 and their distributions’, Glob. Biogeochem. Cycles 7, 321–337.


Crutzen, P. J.: 1976, ‘The possible importance of COS for the sulfate layer of the stratosphere’, Geophys. Res. Lett. 3, 73–76.


Crutzen, P. J. and Ramanathan, V.: 2003, ‘The parasol effect on climate’, Science 302, 1679–1681.


Cubasch, U. et al.: 2001, ‘Projections of Future Climate Change’, Chapter 9, pp. 525–582.

Climate Change 2001: The Scientific Basis, Third Assessment Report of the Intergovernmental Panel on Climate Change, J. T. Houghton et al. (eds.), Cambridge University Press, Cambridge, U.K. and New York, N.Y., USA.


Dickinson, R. E.: 1996, ‘Climate Engineering. A review of aerosol approaches to changing the global energy balance’, Clim. Change 33, 279–290.


Govindasamy, B. and Caldeira, K.: 2000, ‘Geoengineering Earth’s radiative balance to mitigate CO2- induced climatic change’, Geophys. Res. Lett. 27, 2141–2144.


Govindasamy, B. et al.: 2002, ‘Impact of geoengineering schemes on the terrestrial biosphere’, Geophys. Res. Lett. 29(22), 2061,doi.1029/2002GL015911, 2002.


Hansen, J., Lacis, A., Ruedy, R., and Sato, M.: 1992, ‘Potential climate impact of Mount Pinatubo eruption’, Geophys. Res. Lett. 19, 215–218.


Hofmann, D. J. and Solomon, S.: 1989, ‘Ozone destruction through heterogeneous chemistry following the eruption of El Chich´on’, J. Geophys. Res. 94(D4), 5029–5041.


Jamieson, D.: 1996, ‘Ethics and intentional climate change’, Clim. Change 33, 323–336.


Keith, D. W.: 2000, ‘Geoengineering the climate: History and prospect’, Annu. Rev. Energy Environ. 25, 245–284.


Kinnison, D. E. et al.: 1994, ‘The chemical and radiative effects of the Mount Pinatubo eruption’, J. Geophys. Res. 99, 25705–25731.


Lacis, A. A. and Mishchenko, M. I.: 1995, ‘Climate forcing, climate sensitivity, and climate response: Aradiative modelling perspective on atmospheric aerosols’, in Aerosol Forcing of Climate (Charlson R. J. and Heinztenberg, J., (eds.), 416 pp, Wiley, Chichester, pp. 11–42.


Lackner, K. S.: 2003, ‘A guide to CO2 sequestration’, Science 300, 1677–1678.


Lovins, A. B.: 2005, ‘More profit with less carbon’, Scientific American 293, 52–61.


Marland, G., Boden, T. A., and Andres, R. J.: 2005, ‘Global, Regional, and National CO2 Emissions’. in Trends: A Compendium of Data on Global Change. Carbon Diozide Information Analysis Center, Oak Ridge National Laboratory, US. Department of Energy, Oak Ridge, Tenn.


National Academy of Sciences (NAS): 1992, Policy Implications of Greenhouse Warming: MitigationAdaptation, and the Science Base, Panel on Policy Implications of Greenhouse Warming, Committee on Science, Engineering, and Public Policy, National Academy Press, Washington DC, 918 pp.


Nel, A.: 2005, ‘Air pollution-related illness: Effects of particles’, Science 308, 804.


Orr, J. C. et al.: 2005, ‘Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms’, Science 437, 681–686.


Pinker, R.T., Zhang, B., and Dutton, E. G.: 2005, ‘Do satellites detect trends in surface solar radiation?’, Science 308, 850–854.


Pounds, J. A. et al.: 2005, ‘Widespread amphibian extinctions from epidemic disease driven by global warming’, Nature 439, 161–165.


Prentice, I. C. et al.: 2001, ‘The Carbon Cycle and Atmospheric Carbon Dioxide’, Chapter 3, pp. 183– 238, Third Assessment Report of the Intergovernmental Panel on Climate Change, Houghton, J. T. et al. (eds.), Cambridge University Press, U. K. and New York, USA.


Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: 2001, ‘Aerosols, climate and the hydrological cycle’, Science 294, 2119–2124.


Ramaswamy, V. et al.: 2001, ‘Radiative Forcing of Climate Change’, Chapter 6, pp. 349–416.

Climate Change 2001: The Scientific Basis, Third Assessment Report of the Intergovernmental Panel on Climate Change, Houghton, J. T. et al. (eds.), Cambridge University Press, Cambridge, U.K. and New York, N.Y., USA.


Robock, A.: 2000, ‘Volcanic eruptions and climate’, Rev. Geophys. 38, 191–219.


Root, T. L et al.: 2003, ‘Fingerprints of global warming on wild animals and plants’, Nature 421, 57–60.


Rosenfeld, D.: 2000, ‘Suppression of rain and snow by urban and industrial air pollution’, Science 287, 1793–1796.


Royal Society: June 2005, Ocean acidification due to increasing atmospheric carbon dioxide, 57 pp. Schneider, S. H.: 1996, ‘Geoengineering: Could-or-Should-we do it’, Clim. Change 33, 291–302.


Siegenthaler, U. et al.: 2005, ‘Stable carbon cycle-climate relationship during the late Pleistocene’, Science 310, 1313–1317.


Socolow, R. et al.: 2004, ‘Solving the climate problem’, Environment 46, 8–19.


Stainforth, D. A. et al.: 2005, ‘Uncertainty in predictions of the climate response to rising levels of greenhouse gases’, Nature 433, 403–406.


Stern, D. I.: 2005, ‘Global sulfur emissions from 1850 to 2000’, Chemosphere 58, 163–175.


Teller, E.,Wood, L., and Hyde, R.: 1997, ‘Globalwarming and ice ages: 1. Prospects for physics based modulation of global change’, UCRL-JC-128157, Livermore National Laboratory, Livermore, CA.


Wild, M. et al.: 2005, ‘From dimming to brightening: Decadal changes in solar radiation and Earth’s surface’, 308, 847–850.


Wilson, J. C. et al.: 1993, ‘In-situ observations of aerosol and chlorine monoxide after the 1991 eruption of Mount Pinatubo: Effect of reactions on sulfate areosol’, Science 261, 1140–1143.



Max-Planck-Institute for Chemistry PAUL J. CRUTZEN

Department of Atmospheric Chemistry P.O. Box 3060, 55020 Mainz, Germany


and Scripps Institution of Oceanography University of California, San Diego

9500 Gilman Drive MC 0239-0221 La Jolla, CA 92093-0239, USA








Ein künstliches Klima durch SRM Geo-Engineering



 Sogenannte "Chemtrails"     sind SRM Geoengineering-   Forschungs-Experimente


 Illegale Feldversuche der   SRM Technik, weltweit.



Illegale militärische und zivile GE-Forschungen finden in einer rechtlichen Grauzone statt.


Feldversuche oder illegale SRM Interventionen wurden nie in nur einem einzigen Land der Welt,  je durch ein Parlament gebracht, deshalb sind sie nicht legalisiert und finden in einer rechtlichen Grauzone der Forschung statt. Regierungen wissen genau, dass sie diese Risiko-Forschung, die absichtliche Veränderung mit dem Wetter nie durch die Parlamente bekommen würden..


HAARP - Die Büchse der Pandora in militärischen Händen



Illegale zivile und militärische SRM Experimente finden 7 Tage die Woche (nonstop) rund um die Uhr statt. 


Auch Nachts - trotz Nacht-



Geo-Engineering Forschung


Wissenschaftler planen 10 bis 100 Megatonnen hoch toxischer Materialien wie Aluminium, synthetischen Nanopartikeln jedes Jahr in unserer Atmosphäre auszubringen.


Die Mengenangaben von SRM Materialien werden neuerdings fast immer in Teragramm berechnet. 


  1 Teragramm  = 1 Megatonne

  1 Megatonne  = 1 Million Tonnen



SAI = Stratosphärische

Aerosol Injektionen mit toxischen Materialen wie:


  • Aluminiumoxide
  • Black Carbon 
  • Zinkoxid 
  • Siliciumkarbit
  • Diamant
  • Bariumtitanat
  • Bariumsalze
  • Strontium
  • Sulfate
  • Schwefelsäure 
  • Schwefelwasserstoff
  • Carbonylsulfid
  • Ruß-Aerosole
  • Schwefeldioxid
  • Dimethylsulfit
  • Titan
  • Lithium
  • Lithiumsalze
  • Kohlenstoff Flugasche 
  • Kalkstaub
  • Titandioxid
  • Natriumchlorid
  • Meersalz 
  • Calciumcarbonat
  • Siliciumdioxid
  • Silicium
  • Bismuttriiodid (BiI3
  • Polymere
  • Polymorph von TiO2
  • Dialektrika:
  • Sulfate
  • Halogenide und
  • Kohlenstoffverbindungen
  • Halbleiter:
  • Indiumantimonid (InSb)
  • Bleitellunid (PbTe)
  • Indiumarsen (InAs)
  • Carbonat Aersole
  • Silberjodit, Silberiodit
  • Trockeneis (gefrorenes Kohlendioxid)
  • Hygroskopische Materialien wie Salz,
  • Silanox
  • Cilicagel, Kieselgel
  • Kieselsäure 
  • Syloid65 (Subventionierte Brennstoffmischungen =
  • Chemtrail Chemikalien Mix) aus Patentunterlagen
  • Silberiodit-Kaliumiodit-Komplex
  • Lithium-Silberiodit-Komplex
  • Militär verteilt: Glasfaser-Spreu






Der Wissenschaftler David Keith, der die Geo-Ingenieure Ken Caldeira und Alan Robock in ihrer Arbeit unterstütztsagte auf einem Geo-Engineering - Seminar am 20. Februar 2010, dass sie beschlossen hätten, ihre stratosphärischen Aerosol-Modelle von Schwefel auf Aluminium umzustellen


Niemand auf der ganzen Welt , zumindest keiner der staatlichen Medien berichtete von diesem wichtigen Ereignis.





April 2016 

Aerosol Experiments Using Lithium and Psychoactive Drugs Over Oregon.



SKYGUARDS: Petition an das Europäische Parlament - 2013



Wir haben keine Zeit zu verlieren!




Klage gegen Geo-Engineering und Klimapolitik 


Der Rechtsweg ist vielleicht die einzige Hoffnung, Geo-Engineering-Programme zum Anhalten zu bewegen. Paris und andere Klimaabkommen schaffen Ziele von rechtlich international verbindlichen Vereinbarungen. Wenn sie erfolgreich sind, werden höchstwahrscheinlich SRM-Programme ohne ein ordentliches Gerichtsverfahren legalisiert. Wenn das geschieht, wird das unsere Fähigkeit Geoengineering zu verhindern und jede Form von rechtlichen Maßnahmen zu ergreifen stark behindern.


Ziel dieser Phase ist es, Mittel zu beschaffen um eine US- Klage vorzubereiten. Der Hauptanwalt Wille Tierarzt wählt qualifizierte Juristen aus dem ganzen Land aus, um sicher zu stellen, dass wir Top-Talente sichern, die wir für unser langfristiges Ziel einsetzen.



Die Fakten sind, dass seit einem Jahrzehnt am Himmel illegale Wetter -Änderungs-Programme stattfinden, unter Einsatz des Militärs im Rahmen der NATO, ohne Wissen oder Einwilligung der Bevölkerung..

EU-Konferenz und Petition über Wettermodifizierung und Geoengineering in Verbindung mit HAARP Technologien


Die Zeit ist gekommen. Anonymous wird nicht länger zusehen. Am 23. April werden wir weltweit gegen Chemtrails und Geoengineering friedlich demonstrieren.


Anonymous gegen Geoengineering 



Wir waren die allerletzten Zeit Zeugen eines normalen natürlichen blauen Himmels.





Heute ist der Himmel nicht mehr blau, sondern eher rot oder grau. 



Metapedia –

Die alternative Enzyklopädie




Die neue Enzyklopädie Chemtrails GeoEngineering HAARP






SRM - Geoengineering

Aluminium anstatt Schwefeloxid


Im Zuge der American Association for the Advancement of Science (AAAS) Conference 2010, San Diego am 20. Februar 2010, wurde vom kanadischen Geoingenieur David W. Keith (University of Calgary) vorgeschlagen, Aluminium anstatt Schwefeldioxid zu verwenden. Begründet wurde dieser Vorschlag mit 1) einem 4-fach größeren Strahlungsantrieb 2) einem ca. 16-fach geringeren Gerinnungsfaktor. Derselbe Albedoeffekt könnte so mit viel geringeren Mengen Aluminium, anstatt Schwefel, bewerkstelligt werden. [13]


Mehr Beweise als dieses Video braucht man wohl nicht. >>> Aerosol-Injektionen


Das "Geo-Engineering" Klima-Forschungsprogramm der USA wurde direkt dem Weißen Haus unterstellt,

bzw. dort dem White House Office of Science and Technology Policy (OSTP) zugewiesen. 



Diese Empfehlung lassen bereits das Konfliktpotential dieser GE-Forschung erahnen.






In den USA fällt Geo-Engineering unter Sicherheitspolitik und Verteidigungspolitik: 



Geo-Engineering als Sicherheitspolitische Maßnahme..


Ein Bericht der NASA merkt an, eine Katastrophensituation könnte die Entscheidung über SRM maßgeblich erleichtern, dann würden politische und ökonomische Einwände irrelevant sein. Die Abschirmung von Sonnenlicht durch SRM Maßnahmen wäre dann die letzte Möglichkeit, um einen katastrophalen Klimawandel abzuwenden.


maßgeblich erleichtern..????


Nach einer Katastrophensituation sind diese ohnehin illegalen geheimen militärischen SRM Programme wohl noch leichter durch die Parlamente zu bringen unter dem Vorwand der zivilen GE-Forschung. 




Der US-Geheimdienst CIA finanziert mit 630.000 $ für die Jahre   2013/14 

Geoengineering-Studien. Diese Studie wird u.a. auch von zwei anderen staatlichen Stellen NASA und NOAA finanziert. 




Um möglichst keine Spuren zu hinterlassen.. sind wirklich restlos alle Links im Netz entfernt worden. 






Es existieren viele Vorschläge zur technologischen Umsetzung des stratosphärischen Aerosol- Schildes.


Ein Patent aus dem Jahr 1991 behandelt das Einbringen von Aerosolen in die Stratosphäre

(Chang 1991).


Ein neueres Patent behandelt ein Verfahren, in dem Treibstoffzusätze in Verkehrsflugzeugen zum Ausbringen reflektierender Substanzen genutzt werden sollen (Hucko 2009).




Die von Microsoft finanzierte Firma Intellectual Ventures fördert die Entwick­lung eines „Stratoshield“ genannten Verfahrens, bei dem die Aerosolerzeugung in der Strato­sphäre über einen von einem Ballon getragenen Schlauch vom Erdboden aus bewirkt werden soll.


CE-Technologien wirken entweder symptomatisch oder ursächlich


Symptomatisch wirkend: 

Modifikation durch SRM-Geoengineering- Aerosole in der Stratosphäre


Ursächlich wirkend: 

Reduktion der CO2 Konzentration (CDR) 


Effekte verschiedener Wolkentypen


Dicke, tief hängende Wolken reflektieren das Sonnenlicht besonders gut und beeinflussen kaum die Energie, die von der Erde als langwellige Infrarotstrahlung abgegeben wird. Hohe Wolken sind dagegen kälter und meist dünner. Sie lassen daher mehr Sonnenlicht durch, dafür speichern sie anteilig mehr von der langwelligen, abgestrahlten Erdenergie. Um die Erde abzukühlen, sind daher tiefe Wolken das Ziel der Geoingenieure.



Zirruswolken wirken also generell erwärmend (Lee et al. 2009). Werden diese Wolken künstlich aufgelöst oder verändert, so wird sich in der Regel ein kühlender Effekt ergeben.


Nach einem Vorschlag von Mitchell et al.  (2009) könnte dies durch ein Einsäen von effizienten Eiskeimen bei der Wolkenbildung geschehen.



Eiskeime werden nur in sehr geringer Menge benötigt und könnten beispielsweise durch Verkehrs-Flugzeuge an geeigneten Orten ausgebracht werden. Die benötigten Materialmengen liegen dabei im Bereich von einigen kg pro Flug.



Die RQ-4 Global Hawk fliegt etwa in 20 Kilometer Höhe ohne Pilot.

1 - 1,5  Tonnen Nutzlast.


Instead of visualizing a jet full of people, a jet full of poison.



Das Militär hat bereits mehr Flugzeuge als für dieses Geo-Engineering-Szenario erforderlich wären, hergestellt. Da der Klimawandel eine wichtige Frage der nationalen Sicherheit ist [Schwartz und Randall, 2003], könnte das Militär für die Durchführung dieser Mission mit bestehenden Flugzeugen zu minimalen Zusatzkosten sein.




Die künstliche Klima-Kontrolle durch GE


Dies sind die Ausbringung von Aerosolpartikeln in der Stratosphäre, sowie die Erhöhung der Wolkenhelligkeit in der Troposphäre mithilfe von künstlichen Kondensationskeimen.




Brisanz von Climate Engineering  (DFG)


Climate-Engineering wird bei Klimakonferenzen (z.B. auf dem Weltklimagipfel in Doha) zunehmend diskutiert. Da die Maßnahmen für die angestrebten Klimaziele bisher nicht greifen, wird Climate Engineering als alternative Hilfe in Betracht gezogen.





Umweltaktivistin und Trägerin des alternativen Nobelpreises Dr. Rosalie Bertell, berichtet in Ihrem Buch »Kriegswaffe Planet Erde« über die Folgewirkungen und Auswirkungen diverser (Kriegs-) Waffen..


Bild anklicken
Bild anklicken


Dieses Buch ist ein Muss für jeden Bürger auf diesem Planeten.


..Indessen gehen die Militärs ja selbst gar nicht davon aus, dass es überhaupt einen Klimawandel gibt, wie wir aus Bertell´s Buch wissen (Hamilton in Bertell 2011).


Sondern das, was wir als Klimawandel bezeichnen, sind die Wirkungen der immer mehr zunehmenden


und Eingriffe ins Erdgeschehen mittels Geoengineering, insbesondere durch die HAARP-ähnlichen Anlagen, die es inzwischen in aller Welt gibt..


Bild anklicken
Bild anklicken



Why in the World are they spraying 


Durch die bahnbrechenden Filme von Michael J. Murphy "What in the World Are They Spraying?" und "Why in the world are the Spraying?" wurden Millionen Menschen die Zerstörung durch SRM-Geoengineering-Projekte vor Augen geführt. Seitdem bilden sich weltweit Bewegungen gegen dieses Verbrechen.



Die Facebook Gruppe Global-Skywatch hat weltweit inzwischen schon über 90.000 Mitglieder und es werden immer mehr Menschen, die die Wahrheit erkennen und die "gebetsmühlenartig" verbreiteten Lügengeschichten der Regierung und Behörden in Bezug zur GE-Forschung zu Recht völlig hinterfragen. 


Bild anklicken: Untertitel in deutscher Sprache
Bild anklicken: Untertitel in deutscher Sprache





SRM Programme - Ausbringung durch Flugzeuge 




Die Frage die bleibt, ist die Antwort auf  Stratosphärische Aerosol- Injektions- Programme und die tägliche Umweltzer-störung auf unserem Planeten“




Die Arbeit von Brovkin et al. (2009) zeigt für ein Emissionsszenario ohne Emissionskontrolle, dass der Einsatz von RM für mehrere 1000 Jahre fortgesetzt werden muss, je nachdem wie vollständig der Treibhausgas-induzierte Strahlungsantrieb kompensiert werden soll.




Falls sich die Befürchtung bewahrheitet, dass eine Unterbrechung von RM-Maßnahmen zu abruptem Klimawandel führt, kann sich durch den CE-Einsatz ein Lock-in-Effekt ergeben. Die hohen gesamtwirtschaftlichen Kosten dieses abrupten Klimawandels würden sozusagen eine Weiterführung der RM-Maßnahmen erzwingen.







Neben den Studien von CSEPP (1992) und Robock et al. (2009), ist insbesondere die aktuelle Studie von McClellan et al. (2010) hervorzuheben. Für die Ausbringung mit Flugsystemen wird angenommen, dass das Material mit einer Rate von 0,03 kg/m freigesetzt wird. Es werden Ausbringungshöhen von 13 bis 30 km untersucht.





Bestehende kleine Düsenjäger, wie der F-15C Eagle, sind in der Lage in der unteren Stratosphäre in den Tropen zu fliegen, während in der Arktis größere Flugzeuge wie die KC-135 Stratotanker oder KC-10 Extender in der Lage sind, die gewünschten Höhen zu erreichen.


SRM Protest-Märsche gleichzeitig in circa 150 Städten - weltweit.


Geoengineering-Forschung als Plan B für eine weltweit verfehlte Klimapolik. 


Bild anklicken:
Bild anklicken:


Staaten führen illegale Wetter-Änderungs-Techniken als globales Experiment gegen den Klimawandel durch, geregelt über die UN, ausgeführt durch die NATO, mit militärischen Flugzeugen werden jährlich 10-20 Millionen Tonnen hoch giftiger Substanzen in den Himmel gesprüht..


Giftige Substanzen, wie Aluminium, Barium, Strontium, die unsere Böden verseuchen und die auch auf Dauer den ph-Wert des Bodens deutlich verändern würden. Es sind giftige Substanzen, wie Schwefel, welches die Ozonschicht systematisch zerstören würde. 






Weltweite  Protestmärsche gegen globale Geoengineering Experimente finden am 25. April 2015 in all diesen Städten gleichzeitig statt:




AUSTRALIEN - (Adelaide)

AUSTRALIEN - (Albury-Wodonga)

AUSTRALIEN - (Bendigo)

AUSTRALIEN - (Brisbane)

AUSTRALIEN - (Byron Bay)


AUSTRALIEN - (Canberra)


AUSTRALIEN - (Gold Coast)


AUSTRALIEN - (Melbourne)

AUSTRALIEN - (Newcastle)

AUSTRALIEN - (New South Wales, Byron Bay)


AUSTRALIEN - (Port Macquarie)

AUSTRALIEN - (South Coast NSW)

AUSTRALIEN - (South East Qeensland)

AUSTRALIEN - (Sunshine Coast)


AUSTRALIEN - (Tasmania)

BELGIEN - (Brüssel)

BELGIEN - (Brüssel Group)

BRASILIEN - (Curitiba)

BRASILIEN - (Porto Allegre)


Kanada - Alberta - (Calgary)

Kanada - Alberta - (Edmonton)

Kanada - Alberta - (Fort Saskatchewan)

Kanada - British Columbia - (Vancouver Group)

Kanada - British Columbia - (Victoria)

Kanada - Manitobak - (Winnipeg)

Kanada – Neufundland

Kanada - Ontario - (Barrie)

Kanada - Ontario - (Cambridge)

Kanada - Ontario - (Hamilton)

Kanada - Ontario - (London)

Kanada - Ontario - (Toronto)

Kanada - Ontario  - (Ottawa)

Kanada - Ontario - (Windsor)

Kanada - Québec - (Montreal)

KOLUMBIEN - (Medellin)


KROATIEN - (Zagreb)

DÄNEMARK - (Aalborg)

DÄNEMARK - (Kopenhagen)

DÄNEMARK - (Odense)

ESTLAND - (Tallinn)

Ägypten (Alexandria)

FINNLAND - (Helsinki)




DEUTSCHLAND - (Düsseldorf)




Ungarn (Budapest)

IRLAND - (Cork City)

IRLAND - (Galway)

ITALIEN - (Milano)

Italien - Sardinien - (Cagliari)

MAROKKO - (Rabat)


NIEDERLANDE - (Groningen)

NEUSEELAND - (Auckland)

NEUSEELAND - (Christchurch)

NEUSEELAND - (Hamilton)


NEUSEELAND - (New Plymouth)



NEUSEELAND - (Wellington)

NEUSEELAND - (Whangerei)




PORTUGAL - (Lissabon)

SERBIEN - (Glavni Gradovi)



SPANIEN - (Barcelona)

SPANIEN - (La Coruna)

SPANIEN - (Ibiza)

SPANIEN - (Murcia)

SPANIEN - (San Juan - Alicante)

SCHWEDEN - (Gothenburg)

SCHWEDEN - (Stockholm)

SCHWEIZ - (Bern)

SCHWEIZ - (Genf)

SCHWEIZ - (Zürich)

UK - ENGLAND - (London)

UK - ISLE OF MAN - (Douglas)

UK - Lancashir - (Burnley)

UK - Scotland - (Glasgow)

UK - Cornwall - (Truro)

USA - Alaska - (Anchorage)

USA - Arizona - (Flagstaff)

USA - Arizona - (Tucson)

USA - Arkansas - (Hot Springs)

USA - Kalifornien - (Hemet)

USA - CALIFORINA - (Los Angeles)

USA - Kalifornien - (Redding)

USA - Kalifornien - (Sacramento)

USA - Kalifornien - (San Diego)

USA - Kalifornien - (Santa Cruz)

USA - Kalifornien - (San Francisco)

USA - Kalifornien - Orange County - (Newport Beach)

USA - Colorado - (Denver)

USA - Connecticut - (New Haven)

USA - Florida - (Boca Raton)

USA - Florida - (Cocoa Beach)

USA - Florida - (Miami)

USA - Florida - (Tampa)

USA - Georgia - (Gainesville)

USA - Illinois - (Chicago)

USA - Hawaii - (Maui)

USA - Iowa - (Davenport)

USA - Kentucky - (Louisville)

USA - LOUISIANA - (New Orleans)

USA - Maine - (Auburn)

USA - Maryland - (Easton)

USA - Massachusetts - (Worcester)

USA - Minnesota - (St. Paul)

USA - Missouri - (St. Louis)

USA - Montana - (Missoula)

USA - NEVADA - (Black Rock City)

USA - NEVADA - (Las Vegas)

USA - NEVADA - (Reno)

USA - New Jersey - (Red Bank)

USA - New Mexico (Northern)

USA - NEW YORK - (Ithaca)

USA - NEW YORK - (Long Island)

USA - NEW YORK - (New York City)

USA - NORTH CAROLINA - (Asheville)

USA - NORTH CAROLINA - (Charlotte)

USA - NORTH CAROLINA - (Greensboro)

USA - Oregon - (Ashland)

USA - Oregon - (Portland)

USA - Pennsylvania - (Harrisburg)

USA - Pennsylvania - (Pittsburgh)

USA - Pennsylvania - (West Chester)

USA - Pennsylvania - (Wilkes - Barre)

USA - SOUTH CAROLINA - (Charleston)

USA - Tennessee - (Memphis)

USA - Texas - (Austin)

USA - Texas - (Dallas / Metroplex)

USA - Texas - (Houston)

USA - Texas - (San Antonio)

USA - Vermont - (Burlington)

USA - Virginia - (Richmond)

USA - Virginia - (Virginia Beach)

USA - WASHINGTON - (Seattle)

USA - Wisconsin - (Milwaukee)


Bild anklickem: Holger Strom Webseite
Bild anklickem: Holger Strom Webseite


Der Film zeigt eindrucksvolle Beispiele, beginnend beim Einsatz der Atombomben mit ihren schrecklichen Auswirkungen bis hin zu den gesundheitszerstörenden, ja tödlichen Hinterlassenschaften der Atomenergienutzung durch die Energiewirtschaft. Eine besondere Stärke des Films liegt in den Aussagen zahlreicher, unabhängiger Fachleute. Sie erläutern mit ihrem in Jahrzehnten eigener Forschung und Erfahrung gesammelten Wissen Sachverhalte und Zusammenhänge, welche die Befürworter und Nutznießer der Atomtechnologie in Politik, Wirtschaft und Militärwesen gerne im Verborgenen halten wollen.


Prof. Dr. med. Dr. h. c. Edmund Lengfelder



Nicht viel anders gehen Politiker/ Abgeordnete des Deutschen Bundestages mit der hoch toxischen riskanten SRM Geoengineering-Forschung um, um diese riskante Forschung durch die Parlamente zu bekommen.


Es wird mit gefährlichen Halbwissen und Halbwahrheiten gearbeitet. Sie werden Risiken vertuschen, verdrehen und diese Experimente als das einzig Richtige gegen den drohenden Klimawandel verkaufen. Chemtrails sind Stratosphärische Aerosol Injektionen, die  illegal auf globaler Ebene stattfinden, ohne jeglichen Parlament-Beschluss der beteiligten Regierungen.


Geoengineering-Projekte einmal begonnen, sollen für Jahrtausende fortgeführt werden - ohne Unterbrechung (auch bei finanziellen Engpässen oder sonstigen Unruhen) um nicht einen Umkehreffekt  auszulösen.


Das erzählt Ihnen die Regierung natürlich nicht, um diese illegale hochgefährliche RM Forschung nur ansatzweise durch die Parlamente zu bringen.


Spätestens seit dem Atommüll-Skandal mit dem Forschungs-Projekt ASSE wissen wir Bürger/Innen, wie Politik und Wissenschaft mit Forschungs-Risiken umgehen.. Diese Gefahren und Risiken werden dann den Bürgern einfach verschwiegen. 



Am 30. September 2012 ist eine neue Internetplattform zu Climate Engineering online gegangen  


Die Plattform enthält alle neuen Infos -Publikationen, Veranstaltungen etc. zu Climate-Engineering.





Gezielte Eingriffe in das Klima?

Eine Bestandsaufnahme der Debatte zu Climate Engineering

Kieler Earth Institute



Climate Engineering:

Ethische Aspekte

Karlsruher Institut für Technologie



Climate Engineering:

Chancen und Risiken einer Beeinflussung der Erderwärmung. Naturwissenschaftliche und technische Aspekte

Leibniz-Institut für Troposphärenforschung, Leipzig


Climate Engineering:

Wirtschaftliche Aspekte 

Kiel Earth Institute



Climate Engineering:

Risikowahrnehmung, gesellschaftliche Risikodiskurse und Optionen der Öffentlichkeitsbeteiligung

Dialogik Stuttgart



Climate Engineering:

Instrumente und Institutionen des internationalen Rechts

Universität Trier



Climate Engineering:

Internationale Beziehungen und politische Regulierung

Wissenschaftszentrum Berlin für Sozialforschung




Illegale Atmosphären-Experimente finden in Deutschland  seit  2012 „täglich“ am Himmel statt.


Chemtrails  -  Verschwörung am Himmel ? Wettermanipulation unter den Augen der Öffentlichkeit


Auszug aus dem Buch: 


Ich behaupte, dass in etwa 2 bis 3 mal pro Woche, ungefähr ein halbes Dutzend  von frühmorgens bis spätabends in einer Art und Weise Wien überfliegen, die logisch nicht erklärbar ist. Diese Maschinen führen über dem Stadtgebiet manchmal auffällige Steig- und Sinkflüge durch , sie fliegen Bögen und sie drehen abrupt ab. Und sie hinterlassen überall ihre dauerhaft beständigen Kondensstreifen, welche auch ich Chemtrails nenne. Sie verschleiern an manchen Tagen ganz Wien und rundherum am Horizont ist strahlend blauer ...
Hier in diesem Buch  aus dem Jahr 2005 werden die anfänglichen stratosphärischen SRM-Experimente am Himmel beschrieben... inzwischen fliegen die Chemie-Bomber ja 24 h Nonstop, rund um die Uhr.





Weather Modification Patente


Umfangreiche Liste der Patente











Von Pat Mooney - Er ist Gründer und Geschäftsführer der kanadischen Umweltschutzorganisation ETC Group in Ottawa.


Im Jahr 1975 tat sich der US-Geheimdienst CIA mit Newsweek zusammen und warnte vor globaler Abkühlung. Im selben Jahr wiesen britische Wissenschaftler die Existenz eines Lochs in der Ozonschicht über der Antarktis nach und die UN-Vollversammlung befasste sich mit identischen Anträgen der Sowjetunion und der USA für ein Verbot von Klimamanipulationen, die militärischen Zwecken dienen. Dreißig Jahre später redeten alle - auch der US-Präsident über globale Erwärmung. 


Wissenschaftler warnten, der Temperaturanstieg über dem arktischen Eis  und im sibirischen Permafrost könnte in die Klimakatastrophe führen, und der US-Senat erklärte sich bereit , eine Vorlage zu prüfen, mit der Eingriffe in das Klima erlaubt werden sollten. 


Geo-Engineering ist heute Realität. Seit dem Debakel von Kopenhagen bemüht sich die große Politik zusammen mit ein paar Milliardären verstärkt darum, großtechnische Szenarien zu prüfen und die entsprechenden Experimente durchzuführen.


Seit Anfang 2009 überbieten sich die Medien mit Geschichten über Geoengineering als "Plan B". Wissenschaftliche Institute und Nobelpreisträger legen Berichte und Anträge vor, um die Politik zur Finanzierung von Feldversuchen zu bewegen. Im britischem Parlament wie im US-Kongress haben die Anhörungen schon begonnen. Anfang 2010 berichteten Journalisten, Bill Gates investiere privat in Geoengineering-Forschung und werde bei Geoengineering-Patenten zur Senkung der Meerestemperatur und zur Steuerung von Hurrikanen sogar als Miterfinder genannt. Unterdesssen hat Sir Richard Branson - Gründer und Besitzer der Fluglinie Virgin Air - verkündet, er habe eine Kommandozentrale für den Klimakrieg eingerichtet und sei für alle klimatechnischen Optionen offen. Zuvor hatte er 25 Millionen Dollar für eine Technik ausgesetzt, mit der sich die Stratosphäre reinigen lässt. 


Einige der reichsten Männer der Welt (z.B. Richard Branson und Bill Gates ) und die mächtigsten Konzerne (z.B. Shell , Boeing ) werden immer beteiligt.


Geoengineering Karte - ETC Group


ETC Group veröffentlicht eine Weltkarte über Geoengineering-Experimente, die groß angelegte Manipulation des Klimas unserer Erde.  Zwar gibt es keine vollständige Aufzeichnung von Wetter und Klima-Projekten in Dutzenden von Ländern, diese Karte ist aber der erste Versuch, um den expandierenden Umfang der Forschungs-Experimente zu dokumentieren. 


Fast 300 Geo-Engineering-Projekte / Experimente sind auf der Karte vertreten, die zu den verschiedenen Arten von Klima-Änderungs-Technologien gehören.

Einfach anklicken und vergrößern..
Einfach anklicken und vergrößern..


Aus der Sicht der reichen Länder (und ihrer Unternehmen) erscheint Geoengineering einfach perfekt. Es ist machbar. Es ist (relativ) billig. Und es erlaubt der Industrie, den Umbau unserer Wirtschaft und Produktionsweise für überflüssig zu erklären.


Das wichtigste aber ist: Geoengineering braucht keinerlei internationale Übereinkunft. Länder, Unternehmen, ja sogar superreiche Geo-Piraten können es auf eigene Faust durchziehen. Eine bescheidene >Koalition der Willigen< genügt vollauf, und eine Handvoll Akteure kann den Planeten nach Belieben umbauen.


Damit wir es nicht vergessen:


Seit 1945  führten die USA, die UdSSR, England, Frankreich und später auch China mehr als 2000 Atomtests durch – über und unter der Erde und ohne Rücksicht auf die zu erwartenden Auswirkungen auf Gesundheit und Umwelt weltweit. Niemand wurde um Erlaubnis gefragt. Wenn das Weltklima zu kippen droht, werden sie da wirklich vor einseitigen Entscheidungen zurückschrecken? 




Warum ist Geo-Engineering nicht akzeptabel..?


SRM Geoengineering kann nicht im Labor getestet werden: Es ist keine experimentelle Labor-Phase möglich, um einen spürbaren Einfluss auf das Klima zu haben. Geo-Engineering muss massiv eingesetzt werden.


Experimente oder Feldversuche entsprechen tatsächlich den Einsatz in der realen Welt, da kleine Tests nicht die Daten auf Klimaeffekte liefern.


Auswirkungen für die Menschen und die biologische Vielfalt würden wahrscheinlich sofort massiv und möglicherweise irreversibel sein.





Hände weg von Mutter Erde (HOME) ist eine weltweite Kampagne, um unserem kostbaren Planeten Erde, gegen die Bedrohung durch Geo-Engineering-Experimente zu verteidigen. Gehen Sie mit uns, um eine klare Botschaft an die Geo-Ingenieure und die Regierungen weltweit zu senden, dass unsere Erde kein ein Labor ist.



Liste der (SRM) Geoengineering-Forschung

Hier anklicken:
Hier anklicken: research funding 10-9-13.xls


Weltweite Liste der Geoengineering-Forschung SRM Forschungs Länder: 


Großbritannien, Vereinigte Staaten Amerika, Deutschland, Frankreich, Norwegen, Finnland, Österreich und Japan.



In "NEXT BANG!" beschreibt Pat Money neue Risikotechnologien, die heute von Wissenschaftlern, Politikern und mächtigen Finanziers aktiv für den kommerziellen Einsatz vorbereitet werden:


Geo-Engineering, Nanotechnologie, oder die künstliche >Verbesserung< des menschlichen Körpers.


"Die  Brisanz des Buches liegt darin, dass es zeigt, wie die Technologien, die unsere Zukunft bestimmen könnten, heute zum großflächigen Einsatz vorbereitet werden – und das weitgehend unbemerkt von der Öffentlichkeit. Atomkraft, toxische Chemikalien oder genmanipulierte Organismen konnten deshalb nicht durch demokratische Entscheidungen verhindert werden, weil hinter ihnen bereits eine zu große ökonomische und politische Macht stand, als ihre Risiken vielen Menschen erst bewusst wurden.


Deshalb dürfen wir die Diskussion über Geoengineering, Nanotechnologie, synthetische Biologie  und die anderen neuen Risikotechnologien nicht länger den selbsternannten Experten überlassen. Die Entscheidungen über ihren künftigen Einsatz fallen jetzt - es ist eine Frage der Demokratie, dass wir alle dabei mitreden."


Ole von UexküllDirektor der Right Livelihood Award Foundation, die den Alternativen Nobelpreis vergibt



Vanishing of the Bees - No Bees, No Food !


Verschwinden der Bienen  - Keine Bienen, kein Essen !






Solar Radiation Management = SRM

Es ist zu beachten, dass SRM Maßnahmen zwar auf kurzer Zeitskala wirksam werden können, die Dauer ihres Einsatzes aber an der Lebensdauer des CO-2 gebunden ist, welches mehrere Tausend Jahre beträgt.


CDR- Maßnahmen hingegen müssten über einen sehr langen Zeitraum (viele Jahrzehnte) aufgebaut werden, ihr Einsatz könnte allerdings beendet werden, sobald die CO2 Konzentration wieder auf ein akzeptables Niveau gesenkt ist. Entsprechende Anstrengungen vorausgesetzt, könnte dies bereits nach einigen Hundert Jahren erreicht sein.


CDR Maßnahmen: sind relativ teuer und arbeiten viel zu langsam. Bis sie wirken würden, vergehen viele Jahrzehnte


Solar Radiation Management SRM Maßnahmen: billig.. und schnell..



Quelle: Institut für Technikfolgenabschätzung






Solar Radiation Management = SRM


Ironie der Geoengineering Forschung:


Ein früherer SRM Abbruch hätte einen abrupten sehr heftigen Klimawandel zur Folge, den wir in dieser Schnelligkeit und heftigen Form nie ohne diese SRM Maßnahmen gehabt hätten. 


Das, was Regierungen mit den globalen GEO-ENGINEERING-INTERVENTIONEN verhindern wollten, genau das wären dann die globalen Folgeschäden bei der frühzeitigen Beendigung der SRM Forschungs-Interventionen.


Wenn sie diese hoch giftigen SAI - Programme  aus wichtigen Gründen vorher abbrechen müssten, droht uns ein abrupter Klimawandel, der ohne diese GE-Programme nie dagewesen wäre. 


Das bezeichne ich doch mal  als wahre  reale Satire..