Final report of the FP7 CSA project EuTRACE


7. Extended Summary


7.1 Introduction


There is a broad scientific consensus that humans are changing the composition of the atmosphere, and that this is leading to global climate change, as described by the Intergovernmental Panel on Climate Change (IPCC) in its Fifth Assessment Report of 2013 – 14. However, the national and international mitigation efforts encouraged by this recognition have not yet been sufficient to reduce greenhouse gas emissions, or even to significantly slow their annual increase. Furthermore, steps toward adapting to climate change are proving difficult and often costly, and in some cases might not be possible, e.g., for small island states at risk of inundation by sea level rise, and for heavily populated coastal regions.


Against this background, various researchers, policy makers and other stakeholders have begun to consider and discuss responses to climate change that cannot easily be subsumed under the categories of mitigation and adaptation. The first question that is often raised is: Are there viable ways to remove large amounts of CO2 and other greenhouse gases from the atmosphere? Many ideas have been proposed for doing so, which vary considerably in their approach, and include: combining biomass use for energy generation with carbon capture and storage (BECCS); large-scale afforestation; and fertilising the oceans in order to increase the growth and productivity of phytoplankton, thus increasing the uptake of CO2 from the atmosphere and the sedimentation of dead carbon mass to the deep oceans. Going beyond ideas for removing greenhouse gases, another question has also been raised: Are there possibilities for directly cooling the Earth? Several ideas have been proposed for doing so, mostly via increasing the planetary albedo, i.e., the amount of solar radiation that is reflected back to space (mostly by clouds or at the Earth’s surface) and therefore not absorbed by the Earth. Techniques for albedo modification have been proposed that would act at a range of altitudes, including whitening surfaces, making clouds brighter, injecting aerosol particles into the stratosphere, and placing mirrors in space.


Taken together, ideas for greenhouse gas removal and for albedo modification are commonly referred to by the umbrella term “climate engineering” (or “geoengineering”, which is often used synonymously).


This summary gives an overview of the results of the assessment report prepared for the European Commission by EuTRACE (the European Transdisciplinary Assessment of Climate Engineering), a project funded by the European Union’s 7th Framework Programme. The project assessed the current state of knowledge about the techniques subsumed under the umbrella term climate engineering and developed considerations for potential future research and policy development from a specifically European perspective. EuTRACE brought together academics from 14 partner institutions across Europe, with expertise in disciplines ranging from Earth sciences to economics, political science, law, and philosophy. Through the large and interdisciplinary composition of the EuTRACE project consortium, the assessment report is able to capture a broad range of perspectives across disciplines and to reflect on the field’s development through all of them. Thus, it should be of interest not only for the European Commission but also for the broader community of interested stakeholders.


This assessment report provides an overview of the individual techniques that have been proposed for greenhouse gas removal and albedo modification. The state of scientific understanding and technology development (including estimates of potential operational costs) is described, followed by an examination of key questions that arise in the social, ethical, legal, and political domains, such as: the possible influence of climate engineering techniques on mitigation and adaptation efforts; how these techniques are perceived by the public; as well as their conflict potential, economic aspects, distributional effects, and compensation issues. The current regulatory and governance landscapes are then assessed, along with potential avenues for future research and options for developing policy for climate engineering. While the report gives a broad overview of issues around climate engineering and the range of techniques involved, it also carefully distinguishes between the individual techniques wherever appropriate. Furthermore, in order to illustrate many of the key issues, three selected techniques are discussed in greater detail throughout the report, two for greenhouse gas removal — bioenergy with carbon capture and storage (BECCS) and ocean iron fertilisation (OIF) — and one for modifying the Earth’s albedo — stratospheric aerosol injection (SAI). These techniques were chosen for several reasons: they are among the most discussed techniques; they include some of the most advanced governance discussions and developments (especially for OIF); two of the techniques (OIF and BECCS) have undergone dedicated field experimentation; they include one land-based, one ocean-based, and one atmosphere-based technique; they encompass techniques that could potentially be confined to small areas (BECCS) and others that are transboundary in nature (OIF and SAI); they are currently at very different stages of research and technological development; and their presumed levels of effectiveness and potential risks differ greatly.


This summary follows the overall structure of the assessment report in terms of the order of the chapters, although in order to facilitate reading in the form of a summary, the structure within the individual chapters is not always followed. Nevertheless, the broad topics and headings within this summary correspond closely to the chapter contents, making it generally straightforward to locate further details in the main report corresponding to any points made in this summary. To further enhance readability, references are not included in this extended summary; for the original literature on which the various points are based, the reader is referred to the full report.



7.2 Characteristics of techniques to remove greenhouse gases or to modify the planetary albedo


7.2.1 Greenhouse gas removal


A wide range of techniques is discussed in the assessment report for the removal of CO2 and other greenhouse gases from the atmosphere and sequestering them over long periods, including terrestrial and marine techniques, as well as biotically and chemically based techniques. Among the primarily terrestrial biotic techniques are afforestation, BECCS, biochar, as well as other biomass-based techniques; the main terrestrial chemical technique is direct air capture, while enhanced weathering is both terrestrial and marine; finally, two techniques are considered that would aim to increase the rate of carbon transfer to the deep ocean, with ocean fertilisation involving the “biological pump”, and artificial upwelling involving the “physical pump”. The scale of these techniques ranges from those with primarily domestic influence that have minor consequences outside a given domain (except for the small global reduction in the atmospheric greenhouse gas concentrations), to those with transboundary influences on the environment and on global economics, and thus on global societies.


In order to have a substantial impact on the global budgets of long-lived greenhouse gases such as CO2, any removal technique would have to achieve a removal rate equivalent to at least a significant fraction of current global emissions; for CO2 emissions, which now exceed 30 Gt CO2/yr, this would mean removing at least 1 Gt CO2/yr to have a noticeable influence, and much more than that to figure prominently in global climate policy. Many of the techniques considered in this assessment have a theoretical, though unproven, uptake capacity which is within this range. However, for nearly all of the proposed techniques, accomplishing this would require massive infrastructures and energy input, which would take long timescales to develop and would incur costs that could be comparable to or even exceed those of mitigation measures. Furthermore, even at such scales of implementation, atmospheric CO2 concentrations would still only decrease slowly (over decades).


The capacity for deployment at scale, along with the effectiveness of the proposed techniques, if deployed, would be constrained by several factors. These vary between the various techniques, but broadly include:


the operational costs, both for installation and maintenance, which is one of the most important issues to resolve before serious consideration can be given to scaled-up implementation of any of the greenhouse gas removal techniques;


the total biomass resources that would be available and their regeneration rate for biomass-based techniques, as well as the sustainability of intensive, largescale agricultural practices;


the strength of the “rebound effect”, in which any CO2 removed from the atmosphere is counterbalanced by reduced uptake of CO2, or by the release of CO2 from other components of the global carbon cycle;


the total capacity of various storage sites (e.g., depleted hydrocarbon fields and saline aquifers) and reservoirs (e.g., the deep ocean) under consideration; the total storage capacity on the global land surface (in biomass and soils) is at least an order of magnitude smaller than available fossil carbon reserves;


the ocean has much greater storage capacity, theoretically in excess of all known fossil carbon resources, but methods to access this storage and the timescales of such storage have not yet been established, and it is unclear if it will ever be possible to establish appropriate long-term storage methods in the oceans.


the degree of co-location of storage sites with major emissions sites (including bio-energy power plants in the case of BECCS), determining the need for development of significant CO2 transportation infrastructures or relocation of CO2-emitting facilities;


the degree of permanence of storage, i.e.,potential for the future natural release or unintended leakage of the removed carbon; this becomes particularly relevant considering that, in order to prevent an enhanced future build-up of atmospheric carbon dioxide, the removal process would need to be continually maintained.


In addition to these limitations, there are numerous potential negative impacts of the techniques on the environment, ecosystems, and societies to take into consideration, including:


competition and conflicts over land use and water supply being applied for various purposes;


societal impacts of landscape and land use changes; degradation of ecosystems and the environment, e.g., due to chemical inputs for OIF or ocean alkalisation, modification of the marine biosphere due to OIF, or industrial agriculture and introduction of nonnative species and monoculture;


health impacts, e.g., associated with dust production from biochar;


production and release of nitrous oxide (N2O) and other climate-forcing gases (by OIF as well as due to agriculture practices for producing biofuel); major mining, processing, and distribution operations for any techniques such as artificial weathering, which would require substantial material resource inputs.


These various considerations, taken together, indicate that, based on current knowledge, greenhouse gas removal techniques cannot be relied upon to notably supplement mitigation measures in the next few decades. However, if significant investments were made in researching and developing some forms of greenhouse gas removal techniques, and if it were to emerge that they could be successfully scaled up, with wellunderstood and acceptable side effects, then greenhouse gas removal could eventually significantly supplement mitigation efforts and provide an additional degree of flexibility in international climate negotiations.



7.2.2 Albedo modification and related techniques


Albedo modification refers to deliberate, large-scale changes of the Earth’s energy balance by increasing the reflection of sunlight away from the Earth, with the aim of reducing global mean temperatures. Suggestions for increasing the Earth’s reflectivity include:


enhancing the reflectivity of the Earth’s surface;


injecting particles into the atmosphere, either at high altitudes in the stratosphere to directly reflect

sunlight or at low altitudes over the ocean to increase cloud reflectivity;


placing reflective mirrors in space.


A few other related techniques have been proposed to alter the Earth’s energy balance, especially by thinning or reducing the spatial coverage of cirrus clouds to decrease the amount of terrestrial radiation that is trapped in the atmosphere and radiated back towards the Earth’s surface. Taken together, these are referred to here as albedo modification and related techniques. Albedo modification and related techniques are distinct from mitigation and from most greenhouse gas removal techniques, in three key ways:


their effects are potentially rapid and large — according to climate model calculations and observations of large volcanic eruptions, albedo modification might be capable of cooling the Earth’s surface by 1°C or more, with the response being observable within a year or less;


their operational costs are potentially low in comparison to the costs of mitigation, adaptation, or greenhouse gas removal at scales that have an impact on the global atmospheric CO2 concentrations and thus on global temperatures;


their evaluation is better characterised as a risk–risk trade-off.


In light of these distinctions, various potential roles for albedo modification and related techniques have been proposed:


reducing climate risks as much as possible, potentially substituting for some degree of mitigation; use as a “stopgap” measure to allow time for reducing emissions;


use in a potential “climate emergency”. These potential roles are accompanied by various drawbacks, among them:


albedo modification impacts the climate in a manner that is physically different from the impact of greenhouse gases, so that it would not directly reverse the effects of global warming; regional differences in the response could be expected, and precipitation would respond differently than temperature, so that albedo modification techniques may reduce some risks but in turn increase others;


if any technique were being employed at a scale that had a significant cooling impact on global temperature, and then had to be stopped abruptly or over a short period of time, a rapid warming or “termination shock” would ensue, with concomitant risks for societies and ecosystems; the impacts could be made less severe by phasing out the implementation slowly, if possible;


albedo modification does not address the direct effects of CO2 on the environment, such as ocean acidification and impacts on terrestrial vegetation, so there is a risk that those issues might receive less attention or be neglected if terrestrial climate change — manifested in temperature, precipitation, and other parameters — is made less severe.


All of the techniques considered in this assessment harbour substantial uncertainties. In terms of effectiveness and technological feasibility, some of the main issues involved include:


delivery mechanisms, which have received some attention for SAI, with initial studies suggesting that the most economically feasible method is likely to be atmospheric injection via high-flying aircraft or via tethered balloons in the tropics;


Uncertainties about the scale and degree of implementation, e.g., for SAI or marine cloud brightening,


the amount of aerosol particle mass that would need to be injected into the atmosphere to achieve a certain amount of cooling;


Uncertainties about the maximum possible effect (e.g., in terms of radiative forcing in W/m2), due to various environmental limitations and diminishing returns;


Uncertainties about the relationship between the details of implementation (e.g., injection location and particle size) and the climate response;


In terms of the impacts, these vary widely between the techniques, with the key impacts for a selection of the main techniques being:


SAI: reduction of polar stratospheric ozone, changes in the heating rates in the stratosphere, impacts on

the dynamics of the stratosphere, impacts on tropospheric cirrus clouds, influence on vegetation growth,

increased fraction of diffuse- to direct-radiation,

among others.


Marine cloud brightening: changes in the hydrological cycle, potentially changes in the El Niño Southern

Oscillation (ENSO), enhanced precipitation over low-latitude land regions, and corrosive destruction of infrastructures and detrimental effects on coastal plants due to increased atmospheric concentrations of sea salt.


Desert reflectivity enhancement: substantial perturbation of desert ecosystems, considerable regional climatic changes, e.g. reduced regional precipitation adjacent to deserts and reductions in monsoon intensity, along with reductions in the nutrient supply to the Amazon and oceanic regions downwind of the Sahara Desert.


Vegetation reflectivity enhancement: changes in land use may conflict with other goals of land use management such as biodiversity preservation and carbon sequestration; effects on market prices and local ecosystems, as well as on soil moisture and local meteorology.


Based on this assessment, while it might be possible to relatively quickly develop and implement the technological capability to modify the Earth’s radiation budget on a global scale, it would very likely take many decades to be able to do so in an informed and responsible manner. This applies not only to understanding the environmental consequences, but also the societal context in which such an intervention would occur, including its broader ethical implications and the challenges for international regulation and governance that would need to be addressed; these considerations are summarised in the following sections.



7.3 Emerging societal issues


The range of techniques that have been proposed for removing greenhouse gases or for modifying the planetary albedo or cirrus clouds all raise complex questions in the social, ethical, legal, and political domains. However, despite a few decades of discussion, and intensified research and dialogue over the last decade (including several prior assessment reports), the EuTRACE assessment highlights that the vast majority of the societal, ethical, legal, and political concerns raised by climate engineering are still subject to substantial uncertainties and unknowns.


This section gives an overview of the main societal issues that are discussed in the assessment, starting with the political and societal context in which the discourse is unfolding, along with the public awareness and perception of this discourse, particularly in the context of field experiments and prototype deployments. Three further issues and their potential consequences are then described: “moral hazard”, environmental responsibility, and conflict emergence. The potential economic impacts of greenhouse gas removal and albedo modification techniques are then considered, along with the broader issues of the distribution of benefits and costs and how this relates to questions of justice associated with possible climate engineering deployment and to considerations of compensation for harms.


Political and societal context


Climate engineering techniques are each situated in a specific socio-political context, which may in turn be affected through the further development of that technique, e.g., through the use of resources during the deployment process, the direct impacts upon the environments in which the techniques might be implemented, and any unexpected consequences of the techniques. Furthermore, these changes would also be influenced by climate change, which would potentially intensify during the development and progressive deployment of any climate engineering techniques. To date, there has been no integrated analysis of the linkages between climate change, the different climate engineering techniques, and their combined effects on human security, conflict risks, and societal stability.


Public awareness and perception


According to the few studies conducted thus far, most public groups are broadly unaware of the various proposed climate engineering techniques and the debates around their possible consequences. Perceptions of climate engineering, including the degree of acceptance, are strongly dependent not only on the cultural background, but also on the context and framing in which information on climate engineering proposals is provided. Concepts that are often associated with climate engineering include “messing with nature”, “science-fiction”, “Star Wars”, and “environmental dystopia”. Key concerns expressed by members of the public include the potential for inducing international conflict, scepticism about predictability of impacts and about effective governance, and a “NIMBY” (Not In My Back Yard) attitude toward both deployment and field trials.


Public perception and stakeholder engagement in the context of field experiments and prototype deployments


Four example cases for field tests of various proposed techniques (two for BECCS, one for OIF, and one for SAI) were examined. However, given that thus far there have only been a very limited number of field trials of these and other techniques, it is not yet possible to derive clear lessons about the societal context of field trials, and in turn the impacts of stakeholder engagement activities on the ways in which field trials are perceived. Nevertheless, the example field experiment cases are useful to demonstrate that several concrete questions are appropriate for future consideration, including:


What is the role of risk assessment in designing climate engineering field experiments?


What is the role of private sector interests in shaping public perceptions of climate engineering field experiments?


What is the role of trust and public participation in shaping public perceptions of climate engineering field experiments?


What is the role of governance in climate engineering field experiments?



A few key points that arise from the brief analysis in the assessment report are:


Transparency and openness (about intent, design, scale, intellectual property, commercial or other vested interests, etc.) play apparently important but as yet indeterminate roles in shaping public perception;


In all cases, those responsible for the projects considered early and ongoing public participation and engagement, as well as the application of some form of governance (including novel assessment frameworks or modifications of existing frameworks) to be of importance; however, anecdotally, it was found that neither of these guaranteed acceptance or the ability to successfully complete the projects.


The “moral hazard” argument


There is concern that discussing, researching, and developing climate engineering techniques may reduce the overall motivation to reduce greenhouse gas emissions. This concern applies to the range of techniques under both greenhouse gas removal and planetary albedo modification. The moral hazard response may occur via several different mechanisms, with a range of associated background assumptions. There are also sceptical viewpoints that suggest the cliopposite mechanism may dominate in some contexts (i.e., that fear over the mere consideration of climate engineering techniques might drive an invigorated effort toward mitigation).


Environmental responsibility


While it is sometimes argued that the Earth system is already undergoing a large-scale experiment due to the anthropogenic emissions of greenhouse gases and aerosol particles, a key distinction is often drawn between unintentional (albeit not necessarily unknowing) versus intentional interventions in the climate system; associated with this concern is that the potential use of climate engineering techniques in general has been ascribed various negative character traits, including hubris, arrogance, and recklessness.


Conflict emergence


It has been argued that various forms of conflict may emerge throughout the lifecycle of climate engineering activities; these can broadly be distinguished as:


  • competition over scarce resources;
  • resistance against impacts and risks;
  • conflicts over distribution of benefits, costs, and risks;
  • complex multi-level security dilemmas and conflict constellations;
  • power games over climate control.


Economic impacts


As with other societal concerns, economic analysis of climate engineering is in its infancy. The economics of removing greenhouse gases is commonly discussed within the context of the economics of mitigation, particularly considering the slow transformation of industrial structures that would be necessary for effective mitigation, so that greenhouse gas removal techniques such as BECCS are sometimes framed as possibly being useable to “buy time” for such mitigation technologies to be developed and for the transformation of industrial structures to occur. Accordingly, economic assessments of greenhouse gas removal techniques need to consider various carbon costs, which reflect the social costs that arise from scarcity of storage sites or from the changed ambient carbon fluxes between the atmosphere and other carbon reservoirs.


In contrast to the economics of greenhouse gas removal, proposals for planetary albedo modification raise novel economic considerations. It has been argued that this could have the potential to immensely simplify climate change negotiations, transforming them from an extremely complex regulatory regime into a problem grounded in the familiar issue of international cost-sharing. However, this simplification would be accompanied by the numerous other challenges outlined in this section, along with the uncertainties and unknowns in the physical climate system discussed in the previous section, and the difficulties of developing regulation and governance mechanisms outlined in the following sections. It is thus clear that any implementation of albedo modification would entail various costs, such as price effects and social costs. Nevertheless, economic analyses of albedo modification have been primarily concerned with the possibility of cooling the planet at very low operational cost, often neglecting the other associated costs, so that present knowledge of such other costs is very limited. Further complicating the situation, potential side effects, which can take the form of external costs or external benefits, also need to be taken into account for a comprehensive analysis, and to be incorporated in the social costs associated with each technique.


Distribution of benefits and costs


The distribution of benefits, costs and risks — frequently posed as an issue of “winners and losers” — is

not only an economic issue but also raises important normative questions, which vary considerably between different climate engineering techniques. It is not yet clear how, and to what degree, the various techniques would produce inequalities, or whether some would instead act to decrease the existing inequalities and historical injustice of climate change. It is also unclear how the possible redistribution of benefits, costs, and risks might influence inequalities between generations, as the future deployment of cliopposite mate engineering techniques may allow risks and costs to be deferred to future generations; however, this issue is not unique to climate engineering, as it also applies to the use of fossil fuels and many other activities of modern society. Thus, while climate engineering techniques have the potential to reduce some of the worst impacts of climate change for both present and future generations, they might also lead to the externalisation of costs and risks over both space and time.


Questions of justice associated with possible climate

engineering deployment


Problems concerning the distribution of benefits, costs, and risks can be addressed from various justice perspectives, such as that of intergenerational justice noted in the previous point. These perspectives are frequently based on assumptions about obligations towards others, their rights to certain goods, or their interests in decisions that could affect their wellbeing. Various subdomains of justice are particularly relevant for the normative evaluation of the possible deployment of climate engineering techniques:


Distributive justice, reflecting upon the question of how benefits and costs should be distributed according to certain principles or criteria (such as maximisation, the priority view, egalitarianism or sufficientarianism);


Redistributive justice, aiming to redress undeserved benefits or harms;


Intergenerational justice, asking what current generations owe to future generations, and what the normative significance is of past generations’ actions;


Compensatory justice, based on the idea that wrongdoers or the beneficiaries of wrongful actions must compensate, in some form, those who were harmed;


Procedural justice, concerned with the fairness and transparency of the processes by which decisions are made;


Global justice, dealing with principles that should guide one state in its dealings with other states, as well as with questions of the legitimacy (or lack thereof) of international institutions;


Environmental justice, reflecting upon the possibilities and mechanisms to include non-human life and ecosystem sustainability in normative evaluations;


and how to understand human responsibilities toward non-human nature.




The issues of justice, and the associated potential for some to suffer while others might benefit from the deployment of climate engineering techniques, raise questions concerning compensation for possible harms. Three basic questions can be distinguished:


Who should compensate? This question relates to the main principles of compensation for climate change impacts, with the most prominent approaches being the “polluter pays” principle (PPP), the “ability to pay” principle (ATP), and the “beneficiary pays” principle (BPP); these three approaches are not mutually exclusive and can often suggest similar courses of action and similar responsible parties.


Whom should they compensate? The answer to this question is often less clear than might initially be expected. Different climate engineering techniques will affect different countries in many different ways, likely making them worse off in some ways and better off in other ways than they would be under global warming alone, thereby complicating judgments on which stakeholders should be compensated and in which ways, which leads to the third crucial question:


What should be compensated? There are many aspects to this question, including: whether different normative approaches put limits on the kinds of harms that can be compensated; how to attribute monetary values to principally compensable harms; whether those who are compensated should all be equally compensated based on the degrees and types of harms caused; and how to attribute specific harmful impacts, e.g., prolonged drought or flooding, on a case-by-case basis to any form of climate engineering deployment.


The societal concerns outlined in this section form the basis for the development of regulation, policy, and governance frameworks for climate engineering research and possible deployment, as described in the following sections.



7.4 International regulation and governance


Three broad regulatory approaches for climate engineering are put forth in the EuTRACE assessment report:


i) based on its potential role as a situational response to various conditions in the overarching context of

climate change (context);


ii) through risk management measures for individual climate engineering activities and technical processesat the operational level (activities);


iii) through scientific assessment of potential environmental effects of different climate engineering techniques (effects).


To date, most discussion toward developing regulations for climate engineering has taken place within the competent treaty bodies of the London Convention/ London Protocol (LC/LP), focused specifically on maritime climate engineering (“marine geoengineering activities” in the terms of the LC/LP), and of the Convention on Biological Diversity (CBD), focused particularly on the potential impacts of proposed climate engineering techniques on biological diversity. Other international treaties, in particular the UN Framework Convention on Climate Change (UNFCCC), would also be potentially applicable.


In the context of the three broad approaches noted above, these three treaty bodies would primarily

address the issue of climate engineering as follows:


  • the UNFCCC from the standpoint of context;
  • the LC/LP from the standpoint of activities;
  • the CBD from the standpoint of effects.


These three treaty bodies have very different characteristics. While the UNFCCC is focused on minimising the harmful impacts of human activities on the climate system, the LC/LP is focused on protection of the marine environment, and the CBD on conservation of biodiversity. While the UNFCCC and CBD enjoy quasi-universal legal status (with the sole but significant exception of the USA, which has signed but not ratified the CBD), the LC/LP has only a limited international membership, although most member states of the EU are Parties to the treaty.


The LC/LP was the first treaty body to actively initiate significant steps towards the regulation of certain (maritime) greenhouse gas removal techniques, especially OIF. The LC/LP is a process-oriented instrument that seeks to articulate pathways toward decision making in situations involving potential pollution of the marine environment; it typically acts through developing assessment frameworks. As such, the efforts of the LC/LP have concentrated on the development of a risk management framework to regulate potential activities at the operational level, rather than attempting to address the larger contextual questions that climate engineering raises, which would be a role more befitting of the UNFCCC. This risk assessment approach of the LC/LP, following the precautionary principle, has the potential to be a role model for the future development of governance for climate engineering. The process followed by the LP — first adopting a non-binding COP decision and then proceeding to amend the treaty/protocol to create binding law — is also a potential model for other legal regimes in developing regulation for various forms of climate engineering.


In contrast to the LC/LP, the CBD is not designed to regulate specific activities, and in contrast to the UNFCCC, it is not dedicated to the specific context of climate change. The potential role of the CBD in the regulation of climate engineering is instead to identify normative categories and procedures by which the potential effects of climate engineering on biodiversity can be monitored, assessed, and evaluated. The CBD could also have the role of establishing limits, which may not be exceeded, for the reduction or loss of biological diversity. To date, the CBD COP has adopted two specific Decisions explicitly concerning climate engineering (using the term “geoengineering”, without differentiating between albedo modification and greenhouse gas removal techniques). 


Since each of the three approaches noted above (context, activities, and effects) would miss out on important aspects of regulation if applied as standalone approaches, in order to develop an effective regulatory structure for climate engineering, all three approaches would arguably have to be integrated. Such integration, although requiring extensive international effort, would at least be facilitated by the fact that all three relevant legal instruments are, to some extent, based on a common denominator (embodied, for example, in the precautionary principle). The development of a single, overarching, dedicated treaty that would subsume a wide range of techniques under the general term “climate engineering”, and that would attempt to address the full range of aspects involved, would be a prohibitively large undertaking, if at all realisable or desirable. A more promising option would likely be to bring together the three aforementioned regulatory approaches and associated treaty bodies at the operational level (i.e., through parallel action, common assessment frameworks, or Memoranda of Understanding).


Focusing on EU law: without a comprehensive international regulatory structure in place, EU law provides a “bottom-up” source of limitation on climate engineering for member states and the EU itself. Although present EU law cannot be interpreted as generally prohibiting or authorising climate engineering, it serves to structure the decision-making process and provide essential provisions for environmental protection. This applies through both primary and secondary EU law.


In EU primary law, this manifests for instance in the Treaty on the Functioning of the European Union (TFEU), which requires that environmental policy — including the evaluation of climate engineering techniques — “shall be based on the precautionary principle and on the principles that preventive action should be taken, that environmental damages should as a priority be rectified at source and that the polluter should pay”. A further provision of the TFEU is that the Union is also required to take account of available scientific and technical data, including scientific uncertainty, in preparing environmental policy, as well as of the potential benefits and costs of action or lack of action.


To date, no act of EU secondary law has sought to explicitly regulate climate engineering research and/ or deployment. That said, examples of EU secondary law, both procedural and substantive, can be identified that could potentially be triggered, subject to more detailed assessment, in the context of climate engineering research or the possible deployment of climate engineering techniques. In particular, the standard of protection and care mandated by EU primary law has been further developed through EU secondary law and can contribute to international understanding and consensus-building on how international law on a given topic can be interpreted and implemented by other parties.


Finally, a key overall contribution of EU law is the high degree of importance it places on environmental protection and, most prominently, the central objective of improving the quality of the environment rather than merely maintaining it, which can help to provide more stringent scrutiny of potential climate engineering activities than the requirements of public international law. Ultimately, however, EU law will also not directly provide a clear mechanism for developing comprehensive regulation for climate engineering, suggesting that initiatives beyond formal legal approaches will be necessary to effectively govern climate engineering.



7.5 Research options


Over the past decades, there has been a substantial increase in the general interest in and research on the various proposed climate engineering techniques. For greenhouse gas removal techniques, this increase has generally been gradual over this period, while for albedo modification techniques, especially SAI, there was a very rapid increase in interest and research in the 2000s.


The increase in research has been accompanied by extensive discussion on whether or not — and in what forms — such research should be conducted, on how to effectively govern research, and on possible steps between field tests and large-scale deployment of individual techniques. These arguments broadly apply to both greenhouse gas removal and albedo modification, although often in different ways and frequently differentiated between individual techniques.


The main arguments made in favour of conducting research are:


  • information requirements;
  • knowledge provision;
  • deployment readiness;
  • avoidance of premature implementation;
  • elimination of specific proposals;
  • national preparedness;
  • scientific freedom.


The main arguments made against conducting research are:


  • the “moral hazard” argument;
  • allocation of resources for research;
  • the “slippery slope” argument;
  • concerns about large-scale field tests;
  • backlash against research.


To the extent that research is continued, there are many open research questions on climate engineering that could be investigated more deeply, ranging from natural science and technological aspects to social sciences, humanities, and legal issues. The results of this assessment were used to identify important knowledge gaps and to draw up lists of key research questions, grouped into the following topical areas:


  • natural sciences and engineering;
  • public awareness and perception;
  • ethical, political, and societal aspects;
  • governance and regulation.


The list of research questions on climate engineering provided in the assessment is the first known compilation of this breadth, and is intended to give an overview of the range of issues that would benefit from further investigation for various purposes, e.g., as an improved basis for policy making.



7.6 Policy development for climate engineering


The complex socio-technical context within which discussions of climate engineering are emerging necessitates, as a basis for sound decision making, careful engagement with scientific, legal, political, economic, and ethical aspects of climate engineering, as well as with the overall context of climate change and climate change policy. Questions arise concerning technological feasibility, global fairness, international cooperation, distribution of costs and benefits, social acceptability, and possible effects on existing and potential strategies for mitigation and adaptation. Decision makers will thus face complex choices and trade-offs. While many general principles that can guide policy development are likely to apply to most or all climate engineering techniques, the differing stages of development and discourse about the various techniques need to be taken into account when assessing policy options and pathways. This is also reflected in the differences between the three example techniques considered in this assessment (BECCS, OIF, and SAI).


Should the EU decide to act as a global leader on climate engineering research, it could draw on established processes for ensuring comparatively high standards of environmental and social protection to develop farther-reaching propositions for the governance and regulation of both climate engineering research and deployment, with the goal of informing and guiding international discussions.


Discussions of climate engineering governance are not emerging in a legal void. Customary international law includes established principles such as the duty to inform and the duty to prevent transboundary harm.


National laws equally apply, for example the obligation to conduct environmental impact assessments, depending on the jurisdiction in question.



7.6.1 Development of research policy 


In forming a position on climate engineering research, several factors might be considered: the urgency of such research; possible sequences in which the research might be conducted; the multiple applications for which climate engineering may create relevant knowledge.


Based on the experiences in the interdisciplinary EuTRACE project, the consortium broadly advocates a parallel research approach that simultaneously addresses questions of natural scientific and social scientific interest, without prioritising one to be carried out before the other, and emphasises that in doing so, it is valuable to place climate engineering research within the broader context of mitigation and adaptation.


Given the strong arguments that exist both for and against further research, there is a considerable debate about whether research into greenhouse gas removal and albedo modification should take place; great challenges remain for funding agencies and governing bodies, and also for research institutes and individual researchers, to weigh the arguments that speak in favour of and against research into climate engineering. In order to guide the scientific community and policy makers in this debate, several principles have been derived and applied in this assessment. These principles have been distilled from existing provisions in EU primary law, supplemented by international law and the development of climate engineering governance through the CBD and LC/LP, as well as principles from the academic literature


These principles are:


  • the minimisation of harm;
  • the precautionary principle;
  • the principle of transparency;
  • the principle of international cooperation;
  • research as a public good.



Based on these principles, different strategies have been proposed that could be applied across all climate engineering approaches, including:


early public engagement;


independent assessment;


operationalising transparency through adoption of research disclosure mechanisms and targeted public communication platforms;


coordinating international legal efforts through joint adoption of a code-of-conduct for research that

draws upon existing legal texts and principles;


applying frameworks of responsible innovation and

anticipatory governance to natural sciences and engineering research.


The realisation of some of these principles, demands, and instruments — especially in the governance of small-scale field tests of albedo modification techniques, but also similarly for perturbative experiments such as open-ocean OIF experiments — requires adequate governance mechanisms and institutions at national and international levels that currently do not exist.



7.6.2 Development of international governance


Taking into account the possible side effects and risks associated with different climate engineering techniques, the question arises: who can legitimately decide on climate engineering deployment or even

research, and through what processes? Agreements involving the global commons that are acceptable to all parties may be impossible to reach, due to significantly divergent interests that are grounded in geopolitical, economic, and related issues. Furthermore, international decision-making structures often exclude or marginalise those who are especially vulnerable. Procedural norms provide guidance on how these difficulties and shortcomings can be overcome, and include:


notification and consultation of those affected as well as the wider public and other nations; fostering public engagement early in the research phase;


open preparation and execution of environmental as well as societal impact assessments prior to conducting activities that have the potential for significant environmental or other impacts;


transparency and public disclosure of the rationales for policy decisions on climate engineering techniques; providing a mechanism for appeal and revision, to ensure fairness.


The comparatively rapid development of international governance for climate engineering over the past couple of years at the CBD and the LC/LP suggest a willingness amongst states to cooperate on the issue of climate engineering. In the medium term, this might signal the emergence of a regime complex consisting of regulatory provisions that include the CBD and the LC/LP, as well as potentially the UNFCCC (given the considerations noted above), supported by strategies designed to manage interplay between these institutions and by scientific assessments from the IPCC.


A possible way to prevent political and legal interinstitutional conflict could be seen in the conclusion of memoranda of understanding negotiated by the institutions’ secretariats and then submitted to the respective COPs. Specifically for the CBD and the LC/LP this seems to be an achievable near-term goal, given the apparent similarities between the two conventions’ views on climate engineering, as evidenced by their consistent approaches as well as mutual references contained in their statements on the objectives and the future of climate engineering regulation.



7.6.3 Development of techniquespecific policy


In addition to general policy considerations, specific policy considerations for individual techniques may be considered desirable. Below are considerations for the three example techniques that have been considered in EuTRACE, on which policy development may draw, should the development of specific policies for individual techniques become a goal.




EU policy attention to BECCS may be warranted for three reasons:


the suggested importance of BECCS to achieving decarbonisation, e.g., its extensive use in scenarios prepared for the IPCC assessment reports;


the experience that establishing deployment of technologies reliant on large resources and infrastructures requires many decades;


the opposition that is becoming evident in some European countries against proposals for developing BECCS.


Should the EU envisage a substantial role for BECCS in its domestic emissions reduction strategy, steps toward this would include: research and technology development;


infrastructure provision;


market development;


societal engagement.




The EU has very successfully taken the role of an “enforcement organ” of the International Maritime Organization (IMO) in the context of shipping. A central policy option for the EU would be for the European Commission to urge all LP member states to ratify the amendment, and for all LC members to become parties to the LP. Recent developments in the governance of OIF arguably place this technique at the most advanced stage of legal and norm development among climate engineering techniques. As such, it might provide insights into overall developments in climate engineering governance and, accordingly, guidance for developing governance for other





Thus far, the CBD is the only instrument that has directly addressed the issue of SAI, although only by general reference to the umbrella term “climate-related geoengineering”. It may therefore be valuable, at least in the near term, for the EU to maintain an exploratory stance on SAI.


One of the key challenges for SAI, and generally for albedo modification, is the governance of near-term

outdoor experimentation. One option for the EU is to consider thresholds for the impacts of outdoor experiments on radiative forcing. However, such thresholds only aim to address known environmental concerns associated with field tests of SAI, but not the wider concerns that should be taken into account in developing effective governance.



7.6.4 Potential development of climate engineering policy in the EU


With regard to the potential development of climate engineering policy in the EU, two perspectives need

to be distinguished:


the positioning of the EU vis-à-vis climate engineering research;


where the EU as a whole fits into the wider emerging regime complex on climate engineering.


With regard to climate engineering research, the EU, through its seventh framework research programme (FP7), has already funded two projects that focus explicitly on climate engineering. Should the EU decide to support further research, it would be consistent with the general principles outlined above to do so through programs that broadly investigate the environmental, political, legal, and societal implications of any climate engineering techniques that are being investigated, and that help to provide options for future actions. If a sufficiently large need for knowledge exists at a future time, then these programs could potentially be modelled on flagship projects akin to that currently conducted on the human brain, or based on “Joint Programming Initiatives” or “Joint Technology Initiatives” co-funded between the EC and national research budgets.


With regard to the emerging regime complex involving the LC/LP, CBD, and UNFCCC, the EU is arguably in a unique position: On the one hand, its member states are all parties to both the UNFCCC

and the CBD. In addition, the EU itself, being a supranational organisation equipped with the competence to effectively enforce appropriate application of its laws vis-à-vis its member states, is a party to both conventions. Therefore, EU member states could, in principle, agree on a common position for proposal to both the UNFCCC and the CBD. So far, however, no specific EU perspective on climate engineering has been agreed upon. Taking into account its considerable political influence, the EU might one day contemplate leveraging and advancing a common position on climate engineering within the different regulatory settings, thereby — following internal negotiations — perhaps also contributing to the prevention of conflicts among its member states.


Politically, the implementation of a European climate engineering research policy would influence the structure and content of the EU’s climate change response portfolio as it stands today. For the past two decades, the EU has championed the internationally agreed target of limiting global warming to a 2°C increase in global mean surface temperature compared to pre-industrial levels. Given that in the “vast majority” of scenarios considered by the IPCC, staying within the 2°C target during the 21st century would necessitate some form of greenhouse gas removal, this commitment may have challenging implications for climate engineering policy in the EU. Seen from this perspective, research on greenhouse gas removal could become a significant component of developing and evaluating policy options for staying below the 2°C limit. Furthermore, given the currently slow progress on implementing climate change mitigation measures, combined with the limitations of greenhouse gas removal techniques (in particular the technical uncertainties and the long timescales required to significantly influence global atmospheric CO2 concentrations), a strict commitment to the 2°C limit could eventually lead to a very difficult decision over whether to deploy albedo modification techniques in order to stay within a given temperature threshold (e.g., the 2°C limit) or, while recognising the risks of such deployment, to allow the threshold to be crossed.


Should the EU decide to develop climate engineering policy, then the conscientious application of principles embodied in existing legal and regulatory structures, and the development of strategies based on these, may help ensure coherence and consistency with the basic principles upon which broader European research and environmental policy are built.




8. References


Aaheim, A., Romstad, B., Wei, T., Kristjánsson, J. E., Muri, H., Niemeier, U. and Schmidt, H. (2015) “An economic evaluation of solar radiation management”, Science of The Total Environment, 532, pp. 61 – 69.


Abelkop, A. D. K. and Carlson, J. C. (2012) “Reining in Phaethon’s chariot: principles for the governance of geoengineering”, University of Iowa – Legal Studies Research Paper, 21(27), pp. 101 – 145.


Akbari, H., Menon, S. and Rosenfeld, A. (2009) “Global cooling: increasing world-wide urban albedos to offset CO2”, Climatic Change, 94(3 – 4), pp. 275 – 286.


Allen, M. R. (2003) “Liability for climate change”, Nature, 421(6926), pp. 891 – 892.


Alterskjær, K. and Kristjánsson, J. E. (2013) “The sign of the radiative forcing from marine cloud brightening depends on both particle size and injection amount”, Geophysical Research Letters, 40(1), pp. 210 – 215.


Alterskjær, K., Kristjánsson, J. E., Boucher, O., Muri, H., Niemeier, U., Schmidt, H., Schulz, M. and Timmreck, C. (2013) “Sea-salt injections into the low-latitude marine boundary layer: the transient response in three Earth system models”, Journal of Geophysical Research: Atmospheres, 118(21), pp. 12,195 – 12,206.


Alterskjær, K., Kristjánsson, J. E. and Seland, Ø. (2012) “Sensitivity to deliberate sea salt seeding of marine clouds – observations and model simulations”, Atmospheric Chemistry and Physics, 12(5), pp. 2795 – 2807.


Amelung, D. and Funke, J. (2013) “Dealing with the uncertainties of climate engineering: warnings from a psychological complex problem solving perspective”, Technology in Society, 35(1), pp. 32 – 40.


Anderson-Teixeira, K. J., Davis, S. C., Masters, M. D. and Delucia, E. H. (2009) “Changes in soil organic carbon under biofuel crops”, GCB Bioenergy, 1(1), pp. 75 – 96.


Anton, L., Antti-Ilari, P., Harri, K., Ari, L., Kari, E. J. L. and Hannele, K. (2012) “Stratospheric passenger flights are likely an inefficient geoengineering strategy”, Environmental Research Letters, 7(3), pp. 034021.


Arrow, K. J. (2004) “Uncertainty and the welfare economics of medical care. 1963”, Bulletin of the World Health Organization, 82(2), pp. 141 – 149.


Arthur, W. B. (1989) “Competing technologies, increasing returns, and lock-in by historical events”, The Economic Journal, 99(349), pp. 116 – 131.


Athanasiou, T. and Baer, P. (2002) Dead Heat: Global Justice and Global Warming New York: Seven Stories Press.


AWI (2009) Risk Assessment for LOHAFEX, Bremerhaven, Germany: Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association.


Bailey, J. T. and Bailey, L. J. (2008) A Mechanically Produced Thermocline Based Ocean Temperature Regulatory System. [Online]. Available at:


Bala, G. and Caldeira, K. (2000) “Geoengineering Earth’s radiation balance to mitigate CO2-induced climate change”, Geophysical Research Letters, 27(14), pp. 2141 – 2144.


Bala, G., Caldeira, K., Nemani, R., Cao, L., Ban-Weiss, G. and Shin, H.-J. (2010) “Albedo enhancement of marine clouds to counteract global warming: impacts on the hydrological cycle”, Climate Dynamics, 37(5 – 6), pp. 915 – 931.


Bala, G., Duffy, P. B. and Taylor, K. E. (2008) “Impact of geoengineering schemes on the global hydrological cycle”, Proceedings of the National Academy of Sciences of the United States of America, 105(22), pp. 7664 – 7669.


Bala, G. and Nag, B. (2012) “Albedo enhancement over land to counteract global warming: impacts on hydrological cycle”, Climate Dynamics, 39(6), pp. 1527 – 1542.


Bala, G., Thompson, S., Duffy, P. B., Caldeira, K. and Delire, C. (2002) “Impact of geoengineering schemes on the terrestrial biosphere”, Geophysical Research Letters, 29(22), pp. 18 – 1 – 18 – 4.


Balint, P. J., Stewart, R. E., Desai, A. and Walters, L. C. (2011) Wicked Environmental Problems: Managing Uncertainty and Conflict. Washington: Island Press.


Ban-Weiss, G. and Caldeira, K. (2010) “Geoengineering as an optimization problem”, Environmental Research Letters, 5(3), pp. 1 – 9.


Bao, L. and Trachtenberg, M. C. (2006) “Facilitated transport of CO2 across a liquid membrane: comparing enzyme, amine, and alkaline”, Journal of Membrane Science, 280(1), pp. 330 – 334.


Barben, D., Fisher, E., Selin, C. and Guston, D. H. (2008) “Anticipatory Governance of Nanotechnology: Foresight, Engagement, and Integration”, in Hackett, E. J., Amsterdamska, O., Lynch, M. & Wajcman, J. (eds.) The Handbook of Science and Technology Studies. Cambridge, MA: MIT Press, pp. 979 – 1000.


Barnett, T. P., Hasselmann, K., Chelliah, M., Delworth, T., Hegerl, G., Jones, P., Rasmusson, E., Roeckner, E., Ropelewski, C., Santer, B. and Tett, S. (1999) “Detection and attribution of recent climate change: A status report”, Bulletin of the American Meteorological Society, 80(12), pp. 2631 – 2659.


Barrett, S. (2008a) “The incredible economics of geoengineering”, Environmental and Resource Economics, 39(1), pp. 45 – 54.


Barrett, S. (2008b) A Portfolio System of Climate Treaties. Cambridge, MA: The Harvard Project on International Climate Agreements. 


Barrett, S., Lenton, T. M., Millner, A., Tavoni, A., Carpenter, S., Anderies, J. M., Chapin III, F. S., Crépin, A.-S., Daily, G. and Ehrlich, P. (2014) “Climate engineering reconsidered”, Nature Climate Change, 4(7),

pp. 527 – 529.


Bauen, A., Berndes, G., Junginger, M., Londo, M., Vuille, F., Ball, R., Bole, T., Chudziak, C., Faaij, A. and Mozaffarian, H. (2009) Bioenergy – A Sustainable and Reliable Energy Source. A Review of Status and Prospects, Paris: International Energy Agency Bioenergy.


Baughman, E., Gnanadesikan, A., Degaetano, A. and Adcroft, A. (2012) “Investigation of the surface and circulation impacts of cloud-brightening geoengineering”, Journal of Climate, 25(21), pp. 7527 – 7543.


Beckett, K. P., Freer-Smith, P. H. and Taylor, G. (1998) “Urban woodlands: their role in reducing the effects of particulate pollution”, Environmental Pollution, 99(3), pp. 347 – 360.


Bellamy, R., Chilvers, J., Vaughan, N. E. and Lenton, T. M. (2012) “A review of climate geoengineering appraisals”, Wiley Interdisciplinary Reviews: Climate Change, 3(6), pp. 597 – 615.


Bellamy, R., Chilvers, J., Vaughan, N. E. and Lenton, T. M. (2013) ‘“Opening up’ geoengineering appraisal: Multi-Criteria Mapping of options for tackling climate change”, Global Environmental Change, 23(0), pp. 926 – 937.


Bellamy, R. and Hulme, M. (2011) “Beyond the tipping point: understanding perceptions of abrupt climate change and their implications”, Weather, Climate and Society, 3(1), pp. 48 – 60.


Benedick, R. E. (2011) “Considerations on governance for climate remediation technologies: lessons from the ‘ozone hole’”, Stanford Journal of Law, Science and Policy, 4(1), pp. 6 – 9.


Bengtsson, L. (2006) “Geo-Engineering to Confine Climate Change: Is it at all Feasible?”, Climatic Change, 77(3 – 4), pp. 229 – 234.


Berdahl, M., Robock, A., Ji, D., Moore, J. C., Jones, A., Kravitz, B. and Watanabe, S. (2014) “Arctic cryosphere response in the Geoengineering Model Intercomparison Project G3 and G4 scenarios”, Journal of Geophysical Research: Atmospheres, 119(3), pp. 2013JD020627.


Berndes, G., Hoogwijk, M. and van den Broek, R. (2003) “The contribution of biomass in the future global energy supply: a review of 17 studies”, Biomass and Bioenergy, 25(1), pp. 1 – 28.


Bhaduri, G. A. and Šiller, L. (2013) “Nickel nanoparticles catalyse reversible hydration of carbon dioxide for mineralization carbon capture and storage”, Catalysis Science and Technology, 3(5), pp. 1234 – 1239.


Bickel, J. E. (2013) “Climate engineering and climate tipping-point scenarios”, Environment Systems and Decisions, 33(1), pp. 152 – 167.


Bickel, J. E. and Agrawal, S. (2013) “Reexamining the economics of aerosol geoengineering”, Climatic Change, 119(3 – 4), pp. 993 – 1006.


Bickel, J. E. and Lane, L. (2009) An Analysis of Climate Engineering as a Response to Climate Change, Copenhagen: Copenhagen Consensus Centre. Available at: Available at:


Bindoff, N. L., Stott, P. A., AchutaRao, K. M., Allen, M. R., Gillett, N. P., Gutzler, D., Hansingo, K., Hegerl, G., Hu, Y.,Jain, S., Mokhov, I. I., Overland, J., Perlwitz, J., Sebbari, R. and Zhang X., (2013) “Detection and Attribution of Climate Change: from Global to Regional”, in Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P. M. (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA: Cambridge University Press, pp. 867 – 952.


Bitz, C. M., Ridley, J. K., Marika Holland and Cattle, H. (2012) Arctic Climate Change. Global Climate Models and 20th and 21st Century Arctic Climate Change. Netherlands: Springer, p. 405 – 436.


Blackstock, J. J., Battisti, D., Caldeira, K., Eardley, D. E., Katz, J. I., Keith, D. W., Aristides, A. N. P., Schrag, D. P., Socolow, R. H. and Koonin, S. E. (2009) Climate Engineering Responses to Climate Emergencies. Novim: archived online at


Blackstock, J. J. and Long, J. C. S. (2010) “The politics of geoengineering”, Science, 327(5965), pp. 527 – 527.


Blain, S., Queguiner, B., Armand, L., Belviso, S., Bombled, B., Bopp, L., Bowie, A., Brunet, C., Brussaard, C., Carlotti, F., Christaki, U., Corbiere, A., Durand, I., Ebersbach, F., Fuda, J. L., Garcia, N., Gerringa, L., Griffiths, B., Guigue, C., Guillerm, C., Jacquet, S., Jeandel, C., Laan, P., Lefevre, D., Lo Monaco, C., Malits, A., Mosseri, J., Obernosterer, I., Park, Y. H., Picheral, M., Pondaven, P., Remenyi, T., Sandroni, V., Sarthou, G., Savoye, N., Scouarnec, L., Souhaut, M., Thuiller, D., Timmermans, K., Trull, T., Uitz, J., van Beek, P., Veldhuis, M., Vincent, D., Viollier, E., Vong, L. and Wagener, T. (2007) “Effect of natural iron fertilization on carbon sequestration in the Southern Ocean”, Nature, 446(7139), pp. 1070 – 1074.


Bodansky, D. (1996) “May we engineer the climate?”, Climatic Change, 33(3), pp. 309 – 321.


Bodansky, D. (2011) Governing Climate Engineering: Scenarios for Analysis, Cambridge, MA: Harvard Project on Climate Agreements.


Bodansky, D. (2013) “The who, what, and wherefore of geoengineering governance.“, Climatic Change, 121(3), pp. 539 – 551.


Bodle, R. (2010) “ Geoengineering and international law: The search for common legal ground”, Tulsa Law Revue 46(10), pp. 305 – 322.


Bodle, R., with Homann, G., Schiele, S., and Tedsen, E. (2012) The Regulatory Framework for Climate-Related Geoengineering Relevant to the Convention on Biological Diversity. Part II of: Geoengineering in Relation to the Convention on Biological Diversity: Technical and Regulatory Matters. Secretariat of the Convention on Biological Diversity. Montreal, Technical Series No. 66.


Bodle, R. (2013) “Climate Law and Geoengineering”, in Hollo, E. J., Kulovesi, K. & Mehling, M. (eds.), Climate Change and the Law, Ius Gentium: Comparative Perspectives on Law and Justice 21 Springer Netherlands, pp. 447 – 470.


Bodle, R., Oberthür, S., Donat, L., Homann, G., Sina, S. and Tedsen, E. (2013) Options and Proposals for the International Governance of Geoengineering, Berlin: Ecologic Institute.


Bonan, G. B. (2008) “Forests and climate change: forcings, feedbacks, and the climate benefits of forests”, Science, 320, pp. 1444 – 1449.


Borgmann, A. (2012) “The Setting of the Scene. Technological Fixes and the Design of the Good Life”, in Preston, C. J. (ed.) Engineering the Climate: The Ethics of Solar Ration Management. Plymouth: Lexington Books, pp. 189 – 199.


Bostrom, A., O’Connor, R., Bohm, G., Hanss, D., Bodi, O., Ekstrom, F., Halder, P., Jeschke, S., Mack, B., Qu, M., Rosentrater, L., Sandve, A. and Saelensminde, I. (2012) “Causal thinking and support for climate change policies: international survey findings.“, Global Environmental Change-Human and Policy Dimensions, 22(1), pp. 210 – 222.


Boucher, O. and Folberth, G. A. (2010) “New directions: atmospheric methane removal as a way to mitigate climate change?”, Atmospheric Environment, 44, pp. 3343 – 3345.


Boucher, O., Forster, P. M., Gruber, N., Ha-Duong, M., Lawrence, M. G., Lenton, T. M., Maas, A. and Vaughan, N. E. (2014) “Rethinking climate engineering categorization in the context of climate change mitigation and adaptation”, Wiley Interdisciplinary Reviews: Climate Change, 5(1), pp. 23 – 35.


Boucher, O., Halloran, P. R., Burke, E. J., Doutriaux-Boucher, M., Jones, C. D., Lowe, J. A., Ringer, M. A., Robertson, E. and Wu, P. (2012) “Reversibility in an Earth System model in response to CO2 concentration changes”, Environmental Research Letters, 7(2), pp. 1 – 9.


Bower, K., Choularton, T., Latham, J., Sahraei, J. and Salter, S. (2006) “Computational assessment of a

proposed technique for global warming mitigation via albedo-enhancement of marine stratocumulus clouds”, Atmospheric Research, 82(1 – 2), pp. 328 – 336.


Boyd, P. W., Jickells, T., Law, C. S., Blain, S., Boyle, E. A., Buesseler, K. O., Coale, K. H., Cullen, J. J., de Baar, H. J. W., Follows, M., Harvey, M., Lancelot, C., Levasseur, M., Owens, N. P. J., Pollard, R., Rivkin, R. B., Sarmiento, J., Schoemann, V., Smetacek, V., Takeda, S., Tsuda, A., Turner, S. and Watson, A. J. (2007) “Mesoscale iron enrichment experiments 1993 – 2005: synthesis and future directions”, Science, 315(5812), pp. 612 – 617.


Bracmort, K. and Lattanzio, R. K. (2013) Geoengineering: Governance and Technology Policy, Washington, DC: Congressional Research Service, Library of Congress. Available at:


Brandani, S. (2012) “Carbon dioxide capture from air: a simple analysis”, Energy and Environment, 23(2), pp. 319 – 328.


Brzoska, M., Link, P. M. and Neuneck, G. (2012) “Geoengineering - Möglichkeiten und Risiken”, Sicherheit + Frieden, 2012(4).


Buck, H. J. (2012) “Climate Remediation to Address Social Development Challenges. Going Beyond Cost-Benefit and Risk Approaches to Assessing Solar Radiation Management”, in Preston, C. J. (ed.) Engineering the Climate: The Ethics of Solar Ratiation Management. Plymouth: Lexington Books, pp. 133 – 148.


Budyko, M. I. (1974) Climate and Life. New York: Academic Press.


Buesseler, K. O., Doney, S. C., Karl, D. M., Boyd, P. W., Caldeira, K., Chai, F., Coale, K. H., de Baar, H. J. W., Falkowski, P. G., Johnson, K. S., Lampitt, R. S., Michaels, A. F., Naqvi, S. W. A., Smetacek, V., Takeda, S. and Watson, A. J. (2008) “Environment – Ocean iron fertilization – Moving forward in a sea of uncertainty”, Science, 319(5860), pp. 162 –162.


Bunzl, M. (2009) “Researching geoengineering: should not or could not?”, Environmental Research Letters, 4(4), pp. 045104.


Bunzl, M. (2011) “Geoengineering harms and compensation”, Stanford Journal of Law, Science and Policy, 4, pp. 71 – 76.


Burns, W. C. G. (2011) “Climate geoengineering: solar radiation management and its implications for intergenerational equity”, Stanford Journal of Law, Science and Policy 1, pp. 39 – 55.


Caldeira, K. (2009) “Geoengineering to shade Earth”, State of the World 2009: Into a Warming World, pp. 96 – 98.


Caldeira, K. (2012) “The great climate experiment - How far can we push the planet?”, Scientific American, 307(3) pp. 78 – 83.


Caldeira, K. and Keith, D. (2010) “The need for climate engineering research”, Issues in Science and Technology, 27(1), pp. 57 – 62.


Caldeira, K. and Wood, L. (2008) “Global and Arctic climate engineering: numerical model studies”, Philosophical Transactions of the Royal Society A, 366(1882), pp. 4039 – 4056.


Caney, S. (2010) “Climate change and the duties of the advantaged”, Critical Review of International Social and Political Philosophy, 13(1), pp. 203 – 228.


Carbon Engineering, Ltd. Calgary, AB, Canada, T2L 2K8. Available at: (Accessed: 28 May 2015).


Carlin, A. (2007) “Implementation and utilization of geoengineering for global climate change control”, Sustainable Development Law and Policy, 7(2), pp. 56 – 58.


Carr, W. A., Preston, C. J., Yung, L., Szerszynski, B., Keith, D. W. and Mercer, A. M. (2013) “Public engagement on solar radiation management and why it needs to happen now”, Climatic Change, 121 (Geoengineering Research and its Limitations), pp. 1 – 11.


CEO (2011) EU Research Funding: For Who's Benefit? Brussels, Belgium: Corporate Europe Observatory. Available at:


Chapin III, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., Hooper, D. U., Lavorel, S., Sala, O. E., Hobbie, S. E., Mack, M. C. and Díaz, S. (2000) “Consequences of changing biodiversity”, Nature, 405, pp. 234 – 242.


Chisholm, S. W., Falkowski, P. G. and Cullen, J. J. (2001) “Oceans: dis-crediting ocean fertilization”, Science, 294(5541), pp. 309 – 310.


Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R. B., Piao, S. and Thornto, P. (2014) “Carbon and Other Biogeochemical Cycles”, in Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P. M. (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, pp. 465 –570.


Cicerone, R. J. (2006) “Geoengineering: encouraging research and overseeing implementation”, Climatic Change, 77(3 –4), pp. 221 – 226.


Cirisan, A., Spichtinger, P., Luo, B. P., Weisenstein, D. K., Wernli, H., Lohmann, U. and Peter, T. (2013)

“Microphysical and radiative changes in cirrus clouds by geoengineering the stratosphere”, Journal of Geophysical Research: Atmospheres, 118(10), pp. 4533 – 4548.


Collingridge, D. (1980) The Social Control of Technology. London: Frances Pinter.


Conca, K. and Dabelko, G. (2010) Green Planet Blues: Four Decades of Global Environmental Politics. 4 edn. Boulder, CO: Westview Press.


Convention on Biological Diversity (2009) Decision IX/16 on Biodiversity and Climate Change. Montreal:

Secretariat of the Convention on Biological Diversity. Convention on Biological Diversity, Convention on Biological Diversity (2010) Decision X/33 on Biodiversity and Climate Change. Convention on Biological Diversity, Convention on Biological Diversity (2012) Decision XI/20 on Climate-related Geoengineering.


Corner, A. and Pidgeon, N. (2010) “Geoengineering the climate: the social and ethical implications”, Environment, 52(1), pp. 24 – 37.


Corner, A., Pidgeon, N. and Parkhill, K. (2012) “Perceptions of geoengineering: public attitudes, stakeholder perspectives, and the challenge of ‘upstream’ engagement”, Wiley Interdisciplinary Reviews: Climate Change, 3(5), pp. 451 – 466.


Craik, N, Blackstock, J. J. and Hubert, A.-M. (2013) “Regulating geoengineering research through domestic environmental protection frameworks: reflections on the recent canadian ocean fertilization case”, Carbon and Climate Law Review pp. 117 – 124.


Craik, N. and Moore, N. (2014) Diclosure-Based Governance for Climate Engineering Research, Waterloo, Canada and Potsdam, Germany: the Centre for International Governance Innovation and the Institute for Advanced Sustainability Studies. Available at:


Cressey, D. (2012) “Cancelled project spurs debate over geoengineering patents”, Nature, (no. 7399), pp. 429.


Crutzen, P. J. (2006) “Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma?”, Climatic Change, 77(3 – 4), pp. 211 – 219.


Cziczo, D. J., Froyd, K. D., Hoose, C., Jensen, E. J., Diao, M., Zondlo, M. A., Smith, J. B., Twohy, C. H. and Murphy, D. M. (2013) “Clarifying the dominant sources and mechanisms of cirrus cloud formation”, Science, 340(6138), pp. 1320 – 1324.


Daniels, N. and Sabin, J. E. (1997) “Limits to healthcare: fair procedures, democratic deliberation, and the legitimacy problem for insurers”, Philosophy and Public Affairs, 26, pp. 303 – 350.


Davidson, P., Burgoyne, C., Hunt, H. and Causier, M. (2012) “Lifting options for stratospheric aerosol geoengineering: advantages of tethered balloon systems”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1974), pp. 4263 – 4300.


Davies, G. T. (2009) “Law and Policy Issues of Unilateral Geoengineering: Moving to a Managed World”. Available at:


Davies, G.T. (2010) “Geoengineering: a critique”, Climate Law, 1(3), pp. 429 – 441.


Davies, G.T. (2011) “Framing the social, political, and environmental risks and benefits of geoengineering: balancing the hard-to-imagine against the hard-to-measure”, Tulsa Law Review, 43, pp. 261 – 282.


Davis, S. C., Anderson-Teixeira, K. J. and DeLucia, E. H. (2009) “Life-cycle analysis and the ecology of biofuels”, Trends in Plant Science, 14(3), pp. 140 – 146.


Denman, K. L. (2008) “Climate change, ocean processes and ocean iron fertilization”, Marine Ecology Progress Series, 364, pp. 219 – 225.


Dilling, L. and Hauser, R. (2013) “Governing geoengineering research: why, when and how?”, Climatic Change, 121(3), pp. 553 – 565.


Dixon, T., Leamon, G., Zakkour, P. and Warren, L. (2013) “CCS projects as Kyoto Protocol CDM activities”, Energy Procedia, 37, pp. 7596 – 7604.


Dornburg, V. and Marland, G. (2008) “Temporary storage of carbon in the biosphere does have value for climate change mitigation: a response to the paper by Miko Kirschbaum”, Mitigation and Adaptation Strategies for Global Change, 13(3), pp. 211 – 217.


Dornburg, V., van Vuuren, D., van de Ven, G., Langeveld, H., Meeusen, M., Banse, M., van Oorschot, M., Ros, J., van den Born, G. J. and Aiking, H. (2010) “Bioenergy revisited: key factors in global potentials of bioenergy”, Energy and Environmental Science, 3(3), pp. 258 – 267.


Doughty, C., Field, C. and McMillan, A. (2010) “Can crop albedo be increased through the modification of leaf trichomes, and could this cool regional climate?”, Climatic Change, 104(2), pp. 379 – 387.


Driscoll, S., Bozzo, A., Gray, L. J., Robock, A. and Stenchikov, G. (2012) “Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions”, Journal of Geophysical Research: Atmospheres, 117(D17), pp. D17105.


Dröge, S. (2012) “Geoengineering Looming: Climate Control the American or Chinese Way”, in Perthes, V. & Lippert, B. (eds.) Expect the Unexpected: Ten Situations to Keep an Eye On. Berlin: German Institute for International and Security Affairs.


Dupouey, J. L., Dambrine, E., Laffite, J. D. and Moares, C. (2002) “Irreversible impact of past land use change on forest soils and biodiversity”, Ecology, 83(11), pp. 2978 – 2984.


Dykema, J. A., Keith, D. W., Anderson, J. G. and Weisenstein, D. (2014) “Stratospheric controlled perturbation experiment: a small-scale experiment to improve understanding of the risks of solar geoengineering”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2031).


EASAC (2013) Carbon Capture and Storage in Europe. Brussells: European Academies Science Advisory Council.


Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Field, C., Barros, V., Stocker, T. F., Dahe, Q., Minx, J., Mach, K., Plattner, G.-k., Schlömer, S., Hansen, G. and Mastrandrea, M. (2011) IPCC Expert Meeting on Geoengineering : Meeting Report, 20 – 22 June. Lima, Peru (9789291691364. Available at:


Eliese, A. (2012) “Climate change mitigation via sulfate injection to the stratosphere: impact on the global carbon cycle and terrestrial biosphere”, Atmospheric and Oceanic Optics, 25(6), pp. 405 – 413.


Emmerling, J. and Tavoni, M. (2013) Geoengineering and Abatement: A ‘Flat’ Relationship under Uncertainty, Italy: Fondazione Eni Enrico Mattei.


English, J. M., Toon, O. B. and Mills, M. J. (2012) “Microphysical simulations of sulfur burdens from tratospheric sulfur geoengineering”, Atmospheric Chemistry and Physics, 12(10), pp. 4775 – 4793.


ETC Group (2010) Geoengineering: Gambling with GAIA, Ottawa: The ETC Group.


European Union (1992/43/EEC) Directive of the European Parliament and of the Council of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. OJ No. L 206 of 22.7.1992.


European Union (2000/60/EC) Directive of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy, OJ No. L 327 of 22.12.2000.


European Union (2002/49/EC) Directive of the European Parliament and of the Council of 25 June 2002 relating to the assessment and management of environmental noise, OJ No. L 189 of 18.7.2002.


European Union (2004/35/CE) Directive of the European Parliament and of the Council of 21 April 2004 on environmental liability with regard to the prevention and remedying of environmental damage, OJ No. L 143 of 30.4.2004.


European Union (2008/50/EC) Directive of the European Parliament and the Council of 21 May 2008 on ambient air quality and cleaner air for Europe, OJ No. L 152 of 11.6.2008.


European Union (2009/28/EC) Directive of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC.


European Union (2009/31/EC) Directive of the European Parliament and of the Council of 23 April 2009 on the geological storage of carbon dioxide and amending Council Directive 85/337/EEC, European Parliament and Council Directives 2000/60/EC, 2001/80/EC, 2004/35/EC, 2006/12/EC, 2008/1/EC and Regulation (EC) No 1013/2006, OJ No. L 140 of 5.6.2009.


European Union (2009/147/EC) Directive of the European Parliament and of the Council of 30 November 2009 on the conservation of wild birds. OJ No. L of 26.1.2010. European Union (2011/92/EU) Directive of the European Parliament and of the Council of 13 December 2011 on the assessment of the effects of certain public and private projects on the environment, OJ No. L 26 of 28.1.2012.


Feichter, J. and Leisner, T. (2009) “Climate engineering: a critical review of approaches to modify the global energy balance”, European Physical Journal-Special Topics, 176, pp. 81 – 92.


Ferraro, A. J., Highwood, E. J. and Charlton-Perez, A. J. (2011) “Stratospheric heating by potential geoengineering aerosols”, Geophysical Research Letters, 38.


Ferraro, A. J., Highwood, E. J. and Charlton-Perez, A. J. (2014) “Weakened tropical circulation and reduced precipitation in response to geoengineering”, Environmental Research Letters, 9(1), pp. 014001.


Finley, R. J. (2014) “An overview of the Illinois Basin—Decatur project”, Greenhouse Gases: Science and Technology, 4(5), pp. 571 – 579.


Finley, R. J., Frailey, S. M., Leetaru, H. E., Senel, O., Couëslan, M. L. and Scott, M. (2013) “Early operational experience at a one-million tonne CCS demonstration project, Decatur, Illinois, USA”, Energy Procedia, 37, pp. 6149 – 6155.


Fischedick, M., Pietzner, K., Supersberger, N., Esken, A., Kuckshinrichs, W., Zapp, P. and Idrissova, F. (2009) “Stakeholder acceptance of carbon capture and storage in Germany”, Energy Procedia, 1(1), pp. 4783 – 4787.


Fleming, J. R. (2010) Fixing the Sky: The Checkered History of Weather and Climate Control. New York: Columbia University Press.


Foley, R. W., Guston, D. and Sarewitz, D. (2015 forthcoming) “Towards the Anticipatory Governance of Geoengineering”, in Blackstock, J.J. & Low, S. (eds.) Geoengineering Our Climate? Ethics, Politics and Governance. A Working Paper Series on the Ethics, Politics and Governance of Climate Engineering. London: Routledge.


Franks, P. J., Adams, M. A., Amthor, J. S., Barbour, M. M., Berry, J. A., Ellsworth, D. S., Farquhar, G. D., Ghannoum, O., Lloyd, J., McDowell, N., Norby, R. J., Tissue, D. T. and von Caemmerer, S. (2013) “Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century”, New Phytologist, 197(4), pp. 1077 – 1094.


Freeman, C., Fenner, N. and Shirsat, A. H. (2012) “Peatland geoengineering: an alternative approach to terrestrial carbon sequestration”, Philosophical Transactions of The Royal Society A, 370(1974), pp. 4404 – 4421


Fuss, S., Canadell, J. G., Peters, G. P., Tavoni, M., Andrew, R. M., Ciais, P., Jackson, R. B., Jones, C. D., Kraxner, F. and Nakicenovic, N. (2014) “Betting on negative emissions”, Nature Climate Change, 4(10), pp. 850 – 853.


Fyfe, J. C., Cole, J. N. S., Arora, V. K. and Scinocca, J. F. (2013) “Biogeochemical carbon coupling influences global precipitation in geoengineering experiments”, Geophysical Research Letters, 40(3), pp. 651 – 655.


Galaz, V. (2012) “Geo-engineering, governance, and social-ecological systems: critical issues and joint research needs”, Ecology and Society, 17(1)


GAO (2011) Climate engineering: Technical status, future directions, and potential responses, Washington, DC.


Gardiner, S. M. (2010) “Is “Arming the Future” with Geoengineering Really the Lesser Evil? Some Doubts about the Ethics of Intentionally Manipulating the Climate System”, in Gardiner, S.M., Caney, S., Jamieson, D. & Shue, H. (eds.) Climate Ethics: Essential Readings. Oxford: Oxford University Press, pp. 284 – 314.


Gardiner, S. M. (2011) A Perfect Moral Storm: The Ethical Challenge of Climate Change. Oxford: Oxford University Press.


Gardiner, S. M. (2013) “The desperation argument for geoengineering”, Political Science and Politics, 46(01), pp. 28 – 33.


Gaskill, A. (2004) “Desert Area Coverage: Global Albedo Enhancement Project”. Available at:


Genesio, L., Miglietta, F., Lugato, E., Baronti, S., Pieri, M. and Vaccari, F. P. (2011) “Surface albedo following biochar application in durum wheat “, Environmental Research Letters, 7(1), pp. 014025.


Ginzky, H., Herrmann, F., Kartschall, K., Leujak, W., Lipsius, K., Mäder, C., Schwermer, S. and Straube, G. (2011) Geoengineering: Effective climate protection or megalomania?, Dessau: Umweltbundesamt.


Glienke, S., Irvine, P. J. and Lawrence, M. G. (2015) “The impact of geoengineering on vegetation in experiment G1 of the Geoengineering Model Intercomparison Project (GeoMIP)”, submitted to Journal of Geophysical Research.


Gnanadesikan, A., Sarmiento, J. L. and Slater, R. D. (2003) “Effects of patchy ocean fertilization on atmospheric carbon dioxide and biological production”, Global Biogeochemical Cycles, 17(2).


Goeppert, A., Czaun, M., Prakash, G. S. and Olah, G. A. (2012) “Air as the renewable carbon source of the future: An overview of CO2 capture from the atmosphere”, Energy and Environmental Science.


Goes, M., Tuana, N. and Keller, K. (2011) “The economics (or lack thereof) of aerosol geoengineering”, Climatic Change, 109(3 – 4), pp. 1 – 26.


Gollakota, S. and McDonald, S. (2014) “Commercial-scale CCS project in Decatur, Illinois – construction status and operational plans for demonstration”, Energy Procedia, 63, pp. 5986 – 5993.


Gordon, B. (2010) Engineering the Climate: Research Needs and Strategies for International Coordination, Washington DC.: U.S. House of Representatives Science and Technology Committee.


Gramstad, K. and TjØtta, S. (2010) “Climate Engineering: Cost Benefit and Beyond”. Available at: 


Groombridge, B. and Jenkins, M. D. (2002) World Atlas of Biodiversity: Earth’s Living Resources in the 21st

Century. Berkeley, CA: University of California Press. Gu, L. H., Baldocchi, D., Verma, S. B., Black, T. A., Vesala, T., Falge, E. M. and Dowty, P. R. (2002)


“Advantages of diffuse radiation for terrestrial ecosystem productivity”, Journal of Geophysical Research: Atmospheres, 107 (5 – 6), pp. 2-1 – 2-21.


Gu, L. H., Baldocchi, D. D., Wofsy, S. C., Munger, J. W., Michalsky, J. J., Urbanski, S. P. and Boden, T. A. (2003) “Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis”, Science, 299(5615), pp. 2035 – 2038.


Güssow, K., Proelß, A., Oschlies, A., Rehdanz, K. and Rickels, W. (2010) “Ocean iron fertilization: why further research is needed”, Marine Policy, 34(5), pp. 911 – 918.


Gustavsson, L., Pingoud, K. and Sathre, R. (2006) “Carbon dioxide balance of wood substitution: comparing concrete-and wood-framed buildings”, Mitigation and Adaptation Strategies for Global Change, 11(3), pp. 667 – 691.


Guston, D. H. (2014) “Understanding ‘anticipatory governance’”, Social Studies of Science, 44(2), pp. 218 – 242.


Hale, B. (2009) “What’s so moral about the moral hazard?”, Public Affairs Quarterly, pp. 1 – 25.


Hale, B. (2012) “The World that Would Have Been: Moral Hazard Arguments against Geoengineering”, in Preston, C.J. (ed.) Engineering the Climate: The Ethics of Solar Radiation Management. Lanham, MD: Lexington Press, pp. 113 – 131.


Hamilton, C. (2013) Earthmasters: Playing God with the Climate. Crows Nest: Allen & Unwin. Hammond, J. and Shackley, S. (2010) Towards a Public Communication and Engagement Strategy for Carbon Dioxide Capture and Storage Projects in Scotland: A Review of Research Findings, CCS Project Experiences, Tools, Resources and Best Practices: Scottish Carbon Dioxide Capture, Transport and Storage Development Study, Working Paper SCCS 2010 08.


Hammond, J., Shackley, S., Sohi, S. and Brownsort, P. (2011) “Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK”, Energy Policy, 39, pp. 2646 – 2655.


Hamwey, R. (2007) “Active amplification of the terrestrial albedo to mitigate climate change: an exploratory study”, Mitigation and Adaptation Strategies for Global Change, 12(4), pp. 419 – 439.


Harris, N. R. P. (1997) “Trends in stratospheric and free tropospheric ozone”, Journal of Geophysical Research: Atmospheres, 102(D1), pp. 1571 – 1590.


Hartmann, J. and Kempe, S. (2008) “What is the maximum potential for CO2 sequestration by ‘stimulated’ weathering on the global scale?”, Naturwissenschaften, 95(12), pp. 1159 – 1164.


Hartmann, J., West, A. J., Renforth, P., Köhler, P., De La Rocha, C. L., Wolf-Gladrow, D. A., Dürr, H. H. and Scheffran, J. (2013) “Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients and mitigate ocean acidification”, Philosophical Transactions of the Royal Society, 51(2), pp. 1 – 37.


Harvey, L. (2008) “Mitigating the atmospheric CO2 increase and ocean acidification by adding limestone powder to upwelling regions”, Journal of Geophysical Research, 113(C4), pp. C04028.


Haywood, J. M., Jones, A., Bellouin, N. and Stephenson, D. (2013) “Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall”, Nature Climate Change, 3(7), pp. 660 – 665.


Heckendorn, P., Weisenstein, D., Fueglistaler, S., Luo, B. P., Rozanov, E., Schraner, M., Thomason, L. W. and Peter, T. (2009) “The impact of geoengineering aerosols on stratospheric temperature and ozone”, Environmental Research Letters, 4(4), pp. 045108.


Hegerl, G. C. and Solomon, S. (2009) “Risks of climate engineering”, Science, 325(5943), pp. 1178530. Held, I. M. and Soden, B. J. (2006) “Robust responses of the hydrological cycle to global warming”, Journal of Climate, 19(21), pp. 5686 – 5699.


Heyder, U., Schaphoff, S., Gerten, D. and Lucht, W. (2011) “Risk of severe climate change impact on the terrestrial biosphere”, Environmental Research Letters 6(3), pp. 034036.


Heyward, C. (2013) “Situating and abandoning geoengineering: a typology of five responses to dangerous climate change”, Political Science and Politics, 46(1), pp. 23 – 27.


Honegger, M., Michaelowa, A. and Butzengeiger-Geyer, S. (2012) Climate Engineering: Avoiding Pandora’s

Box through Research and Governance: Lysaker, Norway: Fridtjof Nansens Institut. Honegger, M., Sugathapala, K. and Michaelowa, A. (2013) “Tackling climate change: where can the generic framework be located?”, Carbon and Climate Law Review, 2, pp. 125 – 135.


Horton, J., Parker, A. and Keith, D. (2015) “Liability for solar geoengineering: historical precedents, contemporary innovations, and governance possibilities”, N.Y.U. Environmental Law Journal, 22,

pp. 225 – 273.


House, K. Z., Baclig, A. C., Ranjan, M., van Nierop, E. A., Wilcox, J. and Herzog, H. J. (2011) “Economic and energetic analysis of capturing CO2 from ambient air”, Proceedings of the National Academy of Sciences of the United States of America, 108(51), pp. 20428 – 33.


House, K. Z., House, C. H., Schrag, D. P. and Aziz, M. J. (2007) “Electrochemical acceleration of chemical weathering as an energetically feasible approach to mitigating anthropogenic climate change”, Environmental Science and Technology, 41(24), pp. 8464 – 8470.


House, K. Z., Schrag, D. P., Harvey, C. F. and Lackner, K. S. (2006) “Permanent carbon dioxide storage in deep-sea sediments”, Proceedings of the National Academy of Sciences of the United States of America, 103(33), pp. 12291 – 12295.


Howard Jr., E. G., Edward, G. and O’Brien, T. C. (1999) Water-buoyant particulate materials containing micronutrients for phytoplankton. [Online]. Available at:


Hu, Y. H. and Huo, Y. (2011) “Fast and exothermic reaction of CO2 and Li3N into C–N-containing solid materials”, The Journal of Physical Chemistry A, 115(42), pp. 11678 – 11681.


Hubert, A.-M. (2011) “The new paradox in marine scientific research: regulating the potential environmental impacts of conducting ocean science”, Ocean Development and International Law, 42(4), pp. 329 – 355.


Hubert, A.-M. and Reichwein, D. (2015) An Exploration of a Code of Conduct for Responsible Scientific Research Involving Geoengineering, Potsdam and Oxford: IASS and InSIS.


Huijts, N., Midden, C. J. and Meijnders, A. L. (2007) “Social acceptance of carbon dioxide storage”, Energy Policy, 35(5), pp. 2780 – 2789.


Hulme, M. (2014) Can Science Fix Climate Change? A Case Against Climate Engineering. Cambridge: Polity Press.


IEA (2011) Combining Bioenergy with CCS. Reporting and Accounting for Negative Emissions under UNFCCC and the Kyoto Protocol, Paris, France: International Energy Agency. IEA (2011) Technology Roadmap - Biofuels for Transport, Paris, France: International Energy Agency. IEA (2012) Technology Roadmap: Bioenergy for Heat and Power: International Energy Agency. Available at:


IEAGHG (2009) Biomass CCS Study, Cheltenham, UK: International Energy Agency Greenhouse Gas R&D

Programme (IEAGHG). IEAGHG (2011) Potential for Biomass and Carbon Dioxide Capture and Storage, Cheltenham, UK: International Energy Agency Greenhouse Gas R&D Programme (IEAGHG).


IPCC (2005) IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of

the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.


IPCC (2007a) Climate Change 2007: Synthesis Report. Contributions of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC.


IIPCC (2007b) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge  University Press.


IPCC (2013a) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.


IPCC (2013b) “Summary for Policymakers”, in Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P.M. (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA: Cambridge University Press, pp. 3 – 29.


IPCC (2014a) Climate Change 2014: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.


IPCC (2014b) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge

University Press.


IPCC (2014c) “Summary for Policymakers.”, in Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y.O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R. & White, L. L. (eds.) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA: Cambridge University Press, pp. 1 – 32.


Irvine, P. J., Boucher, O., Kravitz, B., Alterskjær, K., Cole, J. N., Ji, D., Jones, A., Lunt, D. J., Moore, J. C. and Muri, H. (2014a)“Key factors governing uncertainty in the response to sunshade geoengineering from a comparison of the GeoMIP ensemble and a perturbed parameter ensemble”, Journal of Geophysical Research: Atmospheres, 119(13), pp. 7946 – 7962.


Irvine, P. J., Lunt, D. J., Stone, E. J. and Ridgwell, A. J. (2009) “The fate of the Greenland Ice Sheet in a geoengineered, high CO2 world”, Environmental Research Letters, 4(4).


Irvine, P. J., Ridgwell, A. and Lunt, D. J. (2010) “Assessing the regional disparities in geoengineering impacts”, Geophysical Research Letters, 37(18), pp. 1 – 6.


Irvine, P. J., Ridgwell, A. J. and Lunt, D. J. (2011) “Climatic effects of surface albedo geoengineering”, Journal of Geophysical Research: Atmospheres, 116(D24), pp. D24112.


Irvine, P. J., Schäfer, S. and Lawrence, M. G. (2014b) “Solar radiation management could be a game changer”, Nature Climate Change, 4(10), pp. 842 – 842.


Irvine, P. J., Sriver, R. L. and Keller, K. (2012) “Tension between reducing sea-level rise and global warming through solar-radiation management”, Nature Climate Change, 2(2), pp. 97 – 100.


Itaoka, K., Saito,A., M. Paukovic, M., de Best-Waldhober, A.-M. Dowd, T. Jeanneret, P. Ashworth and James, M. (2012) Understanding How Individuals Perceive Carbon Dioxide: Implications for Acceptance of Carbon Dioxide Capture and Storage. CSIRO Report EP 118160, Australia: Global CCS Institute. Available at:


Jamieson, D. (1996) “Ethics and intentional climate change”, Climatic Change, 33(3), pp. 323 – 336.


Jamieson, D. (2013) “Some whats, whys and worries of geoengineering”, Climatic Change, 121(3), pp. 1 – 11.


Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F., Johnson, D. W., Minkkinen, K. and Byrne, K. A. (2007) “How strongly can forest management influence soil carbon sequestration?”, Geoderma, 137(3 – 4), pp. 253 – 268.


Jaramillo, P., Griffin, W. M. and McCoy, S. T. (2009) “Life cycle inventory of CO2 in an enhanced oil recovery system”, Environmental Science and Technology, 43(21), pp. 8027 – 8032. Jarvis, A. and Leedal, D. (2012) “The Geoengineering Model Intercomparison Project (GeoMIP):


a control perspective”, Atmospheric Science Letters, 13(3), pp. 157 – 163. Jenkins, A. K. L. and Forster, P. M. (2013) “The inclusion of water with the injected aerosol reduces the simulated effectiveness of marine cloud brightening”, Atmospheric Science Letters, 14(3) pp. 164 – 169.


Jenkins, A. K. L., Forster, P. M. and Jackson, L. S. (2013) “The effects of timing and rate of marine cloud brightening aerosol injection on albedo changes during the diurnal cycle of marine stratocumulus clouds”, Atmospheric Chemistry and Physics, 13(3), pp. 1659 – 1673.


Jin, X. and Gruber, N. (2003) “Offsetting the radiative benefit of ocean iron fertilization by enhancing N2O emissions”, Geophysical Research Letters, 30(24).


Jones, A., Haywood, J. and Boucher, O. (2009) “Climate impacts of geoengineering marine stratocumulus clouds”, Journal of Geophysical Research: Atmospheres, 114, pp. 9.


Jones, A., Haywood, J. and Boucher, O. (2011) “A comparison of the climate impacts of geoengineering by stratospheric SO2 injection and by brightening of marine stratocumulus cloud”, Atmospheric Science Letters, 12(2), pp. 176 – 183.


Jones, A., Haywood, J., Boucher, O., Kravitz, B. and Robock, A. (2010) “Geoengineering by stratospheric SO2

injection: results from the Met Office HadGEM(2) climate model and comparison with the Goddard Institute for Space Studies ModelE”, Atmospheric Chemistry and Physics, 10(13), pp. 5999 – 6006.


Jones, A. and Haywood, J. M. (2012) “Sea-spray geoengineering in the HadGEM2-ES earth-system model: radiative impact and climate response”, Atmospheric Chemistry and Physics, 12(22), pp. 10887 – 10898.


Jones, A., Haywood, J. M., Alterskjær, K., Boucher, O., Cole, J. N. S., Curry, C. L., Irvine, P. J., Ji, D., Kravitz, B., Kristjánsson, J. E., Moore, J. C., Niemeier, U., Robock, A., Schmidt, H., Singh, B., Tilmes, S., Watanabe, S. and Yoon, J.-H. (2013) “The impact of abrupt suspension of solar radiation management (termination effect) in experiment G2 of the Geoengineering Model Intercomparison Project (GeoMIP)”, Journal of Geophysical Research: Atmospheres, 118(17), pp. 9743 – 9752.


Jones, C. D., Cox, P. and Huntingford, C. (2003) “Uncertainty in climate-carbon cycle projections associated with the sensitivity of soil respiration to temperature”, Tellus B, 55(2), pp. 642 – 648.


Joronen, S., Oksane, M. and Vuorisalo, T. (2011) “Towards weather ethics: from chance to choice with weather modification”, Ethics, Policy and Environment 14(1), pp. 55 – 67.


Kahan, D. M., Silva, C. L., Jenkins-Smith, H., Braman, D. and Tarantola, T. (2012) “Geoengineering and the science communication environment: a cross-cultural experiment”, SSRN Electronic Journal, 92(41).


Kalidindi, S., Bala, G., Modak, A. and Caldeira, K. (2014) “Modeling of solar radiation management: a comparison of simulations using reduced solar constant and stratospheric sulphate aerosols”, Climate Dynamics, pp. 1 – 17.


Karinen, R. and Guston, D. H. (2010) “Toward anticipatory governance: the experience with nanotechnology”, Governing Future Technologies: Springer, pp. 217 – 232.


Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P. and Richardson, A. D. (2013) “Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise”, Nature, 499(7458), pp. 324 – 327.


Keith, D. W. (2000) “Geoengineering the climate: history and prospect”, Annual Review of Energy and the Environment, 25, pp. 245 – 284.


Keith, D. W. (2010) “Photophoretic levitation of engineered aerosols for geoengineering”, Proceedings of the National Academy of Sciences of the United States of America, 107(38), pp. 16428 – 16431.


Keith, D. W., Duren, R. and MacMartin, D. G. (2014) “Field experiments on solar geoengineering: report of a workshop exploring a representative research portfolio”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2031).


Keith, D. W., Parson, E. and Morgan, M. G. (2010) “Research on global sun block needed now”, Nature, 463(7280), pp. 426 – 427.


Keller, D. P., Feng, E. Y. and Oschlies, A. (2014) “Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario”, Nature Communications, 5, pp. 3304.


Kember, M. R., Buchard, A. and Williams, C. K. (2011) “Catalysts for CO2/epoxide copolymerisation”, Chemical Communications, 47(1), pp. 141 – 163.


Keohane, R. O. and Victor, D. G. (2011) “The regime complex for climate change.”, Perspectives on Politics, 9(1), pp. 7 – 23.


Kheshgi, H. S. (1995) “Sequestering atmospheric carbon dioxide by increasing ocean alkalinity”, Energy-The International Journal, 20(9), pp. 915 – 922.


Kiehl, J. T. (2006) “Geoengineering climate change: treating the symptom over the cause?”, Climatic Change, 77(3 – 4), pp. 227 – 228.


Kiehl, J. T. and Trenberth, K. E. (1997) “Earth’s annual global mean energy budget”, Bulletin of the American Meteorological Society, 78(2), pp. 197 – 208.


Klein, R. J. T., Midgley, G. F. and Preston, B. L. (2014) “Adaptation Opportunities, Constraints, and Limitst”, in IPCC (ed.) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA: Cambridge University Press, pp. 899 – 943.


Klepper, G. (2012) “What are the costs and benefits of climate engineering? And can we assess them?”, S+F Sicherheit und Frieden, Special Issue: Geoengineering: An Issue for Peace and Security?(4).


Klepper, G. and Rickels, W. (2012) “The Real Economics of Climate Engineering”, Economics Research International, 2012, pp. 1 – 20.


Klepper, G. and Rickels, W. (2014) “Climate engineering: economic considerations and research challenges”, Review of Environmental Economics and Policy, 8(2), pp. 270 – 289.


Köhler, P., Abrams, J. F., Völker, C., Hauck, J. and Wolf-Gladrow, D. A. (2013) “Geoengineering impact of open ocean dissolution of olivine on atmospheric CO 2 , surface ocean pH and marine biology”, Environmental Research Letters, 8(1), pp. 14009 – 14009.


Köhler, P., Hartmann, J. and Wolf-Gladrow, D. A. (2010) “Geoengineering potential of artificially enhanced silicate weathering of Olivine”, Proceedings of the National Academy of Sciences of the United States of America, 107(47), pp. 20228 – 33.


Koren, I., Kaufman, Y. J., Washington, R., Todd, M. C., Rudich, Y., Martins, J. V. and Rosenfeld, D. (2006) “The Bodélé depression: A single spot in the Sahara that provides most of the mineral dust to the Amazon forest”, Environmental Research Letters, 1(1).


Korhonen, H., Carslaw, K. S. and Romakkaniemi, S. (2010) “Enhancement of marine cloud albedo via controlled sea spray injections: a global model study of the influence of emission rates, microphysics and transport”, Atmospheric Chemistry and Physics, 10(9), pp. 4133 – 4143.


Kravitz, B., Caldeira, K., Boucher, O., Robock, A., Rasch, P. J., Alterskjær, K., Bou Karam, D., Cole, J. N., Curry, C. L., Haywood, J. M., Irvine, P. J., Ji, D., Jones, A., Kristjánsson, J. E., Lunt, D. J., Moore, J. C., Niemeier, U., Schmidt, H., Schulz, M., Singh, B., Tilmes, S., Watanabe, S., Yang, S. and Yoon, J.-H. (2013a) “Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP)”,

Journal of Geophysical Research: Atmospheres, 118(15), pp. 8320 – 8332.


Kravitz, B., Forster, P. M., Jones, A., Robock, A., Alterskjær, K., Boucher, O., Jenkins, A. K. L., Korhonen, H., Kristjánsson, J. E., Muri, H., Niemeier, U., Partanen, A.-I., Rasch, P. J., Wang, H. and Watanabe, S. (2013b) “Sea spray geoengineering experiments in the Geoengineering Model Intercomparison Project (GeoMIP): experimental design and preliminary results”, Journal of Geophysical Research: Atmospheres, 118(19), pp. 11175 – 11186.


Kravitz, B., MacMartin, D. G., Robock, A., Rasch, P. J., Ricke, K. L., Cole, J. N. S., Curry, C. L., Irvine, P. J., Ji, D., Keith, D. W., Kristjánsson, J. E., Moore, J. C., Muri, H., Singh, B., Tilmes, S., Watanabe, S., Yang, S. and Yoon, J.-H. (2014) “A multi-model assessment of regional climate disparities caused by solar geoengineering”, Environmental Research Letters, 9, 074013.


Kravitz, B., Robock, A., Boucher, O., Schmidt, H., Taylor, K. E., Stenchikov, G. and Schulz, M. (2011) “The Geoengineering Model Intercomparison Project (GeoMIP)”, Atmospheric Science Letters, 12(2), pp. 162 – 167.


Kravitz, B., Robock, A. and Irvine, P. (2013c) “Robust Results From Climate Model Simulations of Geoengineering”, Eos, Transactions American Geophysical Union, 94(33), pp. 292 – 292.


Kravitz, B., Robock, A., Oman, L., Stenchikov, G. and Marquardt, A. B. (2009) “Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols”, Journal of Geophysical Research: Atmospheres, 114, pp. 7.


Kravitz, B., Robock, A., Shindell, D. T. and Miller, M. A. (2012) “Sensitivity of stratospheric geoengineering with black carbon to aerosol size and altitude of injection”, Journal of Geophysical Research-Atmospheres, 117(D9), pp. D09203.


Kriegler, E., Edenhofer, O., Reuster, L., Luderer, G. and Klein, D. (2013) “Is atmospheric carbon dioxide removal a game changer for climate change mitigation? “, Climatic Change, 118(1), pp. 45 – 57.


Kroeker, K. J., Kordas, R. L., Crim, R. N. and Singh, G. G. (2010) “Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms”, Ecology Letters, 13(11), pp. 1419 – 1434.


Kuebbeler, M., Lohmann, U. and Feichter, J. (2012) “Effects of stratospheric sulfate aerosol geo-engineering

on cirrus clouds”, Geophysical Research Letters, 39(23), pp. L23803.


Lackner, K. S. (2009) “Capture of carbon dioxide from ambient air”, European Physical Journal- Special Topics, 176, pp. 93 – 106.


Lackner, K. S., Brennan, S., Matter, J. M., Park, A.-H., Wright, A. and Van Der Zwaan, B. (2012) “The urgency of the development of CO2 capture from ambient air: supporting information”. Proceedings of the National Academy of Sciences of the United States of America, 109(33), pp. 13156 – 13162.


Lackner, K. S., Wendt, C. H., Butt, D. P., Joyce Jr, E. L. and Sharp, D. H. (1995) “Carbon dioxide disposal in carbonate minerals”, Energy, 20(11), pp. 1153 – 1170.


Lafforgue, G., Magné, B. and Moreaux, M. (2008) “Energy substitutions, climate change and carbon sinks”, Ecological Economics, 67(4), pp. 589 – 597.


Latham, J. (1990) “Control of global warming”, Nature, 347(6291), pp. 339 – 340.


Latham, J., Rasch, P., Chen, C. C., Kettles, L., Gadian, A., Gettelman, A., Morrison, H., Bower, K. and Choularton, T. (2008) “Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds”, Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 366(1882), pp. 3969 – 3987.


Lawrence, M. G. (2002) “Side effects of oceanic iron fertilization”, Science, 297(September), pp. 2002 – 2002.


Lawrence, M. G. (2006) “The geoengineering dilemma: to speak or not to speak”, Climatic Change, 77(3 – 4), pp. 245 – 248.


Lee, J. W. (2008) Method for reducing carbon dioxide in atmosphere using deep-ocean water and method for preventing global warming using the same. Patent no. KR20100034135. [Online]. Available at:


Lee, J. W., Yang, P., Dessler, A. E., Gao, B. C. and Platnik, S. (2009) “Distribution and radiative forcing of tropical thin cirrus clouds”, Journal of Atmospheric Science, 66(12), pp. 3721 – 3731.


Lehmann, J., Gaunt, J. and Rondon, M. (2006) “Bio-char sequestration in terrestrial ecosystems – A review”, Mitigation and Adaptation Strategies for Global Change, 11(2), pp. 395 – 419.


Lenton, T. M. and Vaughan, N. E. (2009) “The radiative forcing potential of different climate geoengineering options”, Atmospheric Chemistry and Physics, 9(15), pp. 5539 – 5561.


Lenton, T. M. and Vaughan, N. E. (eds.) (2013) Geoengineering Responses to Climate Change – Biochar, Tool for Climate Change Mitigation and Soil Management. New York, Heidelberg, Dordrecht, London: Springer.


Levine, J. S., Matter, J. M., Goldberg, D., Cook, A. and Lackner, K. S. (2007) “Gravitational trapping of carbon dioxide in deep sea sediments: permeability, buoyancy, and geomechanical analysis”, Geophysical Research Letters, 34(24).


Lin, A. C. (2009) “Geoengineering governance”, Issues in Legal Scholarship, 8(1). Lin, A.C. (2012) “Does Geoengineering Present a Moral Hazard”, UC Davis Legal Studies Research Paper, (312).


Lin, A.C. (2013) “Does Geoengineering Present a Moral Hazard?”, Ecology Law Quarterly, Forthcoming, 40,

pp. 673 – 712.


Link, P. M., Brzoska, M., Maas, A., Neuneck, G. and Scheffran, J. (2013) “Possible implications of climate engineering for peace and security”, Bulletin of the American Meteorological Society, 94(2), pp. ES13-ES16.


Liss, P., Chuck, A., Bakker, D. and Turner, S. (2005) “Ocean fertilization with iron: effects on climate and air quality”, Tellus B, 57(3), pp. 269 – 271.


Liu, S. C., Fu, C., Shiu, C. J., Chen, J. P. and Wu, F. (2009) “Temperature dependence of global precipitation extremes”, Geophysical Research Letters, 36(17).


Lloyd, I. D. and Oppenheimer, M. (2011) “On the Design of an International Governance Framework for Geoengineering”, Global Environmental Politics, (609), pp. 1 – 25.


Lobell, D. B., Hammer, G. L., McLean, G., Messina, C., Roberts, M. J. and Schlenker, W. (2013) “The critical role of extreme heat for maize production in the United States”, Nature Climate Change, 3(5), pp. 497 – 501.


Lobell, D. B., Schlenker, W. and Costa-Roberts, J. (2011) “Climate trends and global crop production since 1980”, Science, 333(6042), pp. 616 – 620.


London Convention and Protocol (2006) Resolution LP.1(1) of 2 November 2006, Amendment to Include CO2 Sequestration in Sub-seabed Geological Formations in Annex 1 to the London Protocol. London Convention and Protocol (2008) Resolution LC-LP.1 of 31 October 2008 on the Regulation of Ocean Fertilization, LC 30/16, Annex 6. London Convention and Protocol (2009) Resolution LP.3(4) of 30 October 2009 on the Amendment to Article 6 of the London Protocol. London Convention and Protocol (2010) Resolution LC-LP.2 of 14 October 2010 on the Assessment Framework for Scientific Research Involving Ocean Fertilization. 


Lovelock, J. E. and Rapley, C. G. (2007) “Ocean pipes could help the Earth to cure itself”, Nature, 449.


Lovett, A. A., Sünnenberg, G. M., Richter, G. M., Dailey, A. G., Riche, A. B. and Karp, A. (2009) “Land use implications of increased biomass production identified by GIS-based suitability and yield mapping for miscanthus in England”, BioEnergy Research, 2(1 – 2), pp. 17 – 28.


Luckow, P., Wise, M. A., Dooley, J. J. and Kim, S. H. (2010) “Large-scale utilization of biomass energy and carbon dioxide capture and storage in the transport and electricity sectors under stringent CO2 concentration limit scenarios”, International Journal of Greenhouse Gas Control, 4(5), pp. 865 – 877.


Luderer, G., Pietzcker, R. C., Kriegler, E., Haller, M. and Bauer, N. (2012) “Asia’s role in mitigating climate change: A technology and sector specific analysis with ReMIND-R”, Energy Economics, 34, pp. S378 – S390.


Lunt, D. J., Ridgwell, A., Valdes, P. J. and Seale, A. (2008) “‘Sunshade World’: A fully coupled GCM evaluation of the climatic impacts of geoengineering”, Geophysical Research Letters, 35(12), pp. L12710.


Maas, A. and Scheffran, J. (2012) “Climate conflicts 2.0? Climate engineering as a challenge for international peace and security”, Security and Peace, 30(4), pp. 193 – 200.


MacCracken, M., Barrett, S., Barry, R., Crutzen, P., Hamburg, S., Lampitt, R., Liverman, D., Lovejoy, T., McBean, G., Parson, E., Seidel, S., Shepherd, J., Somerville, R. and Wigley, T. M. L. (2010) “The Asilomar Conference Recommendations on Principles for Research into Climate Engineering Techniques”, Asilomar International Conference on Climate Intervention Pacific Grove, CA, March 22 – 26, 2010: Climate Change Institute.


MacCracken, M. C., Shin, H. J., Caldeira, K. and Ban-Weiss, G. (2012) “Climate response to imposed solar radiation reductions in high latitudes”, Earth System Dynamics Discussions, 3(2), pp. 715 – 757.


MacMartin, D. G., Caldeira, K. and Keith, D. W. (2014) “Solar geoengineering to limit the rate of temperature change”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2031), pp. 20140134.


MacMartin, D. G., Keith, D. W., Kravitz, B. and Caldeira, K. (2012) “Management of trade-offs in geoengineering through optimal choice of non-uniform radiative forcing”, Nature Climate Change, 3, pp. 365 – 368.


MacMynowski, D. G., Keith, D. W., Caldeira, K. and Shin, H.-J. (2011) “Can we test geoengineering?”, Energy and Environmental Science, 4(12), pp. 5044 – 5052.


Macnaghten, P. and Owen, R. (2011) “Environmental science: good governance for geoengineering”, Nature, 479(7373), pp. 293.


Macnaghten, P. and Szerszynski, B. (2013) “Living the global social experiment: an analysis of public discourse on solar radiation management and its implications for governance”, Global Environmental Change-Human and Policy Dimensions, 23(2), pp. 465 – 474.


March, J. G. and Olsen, J. P. (1998) “The institutional dynamics of international political orders”, International Organization, 52(04), pp. 943 – 969.


Markus, T. and Ginzky, H. (2011) “Regulating climate engineering: paradigmatic aspects of the regulation of ocean fertilization”, Carbon and Climate Law Review (CCLR), (4), pp. 477 – 490.


Markusson, N., Ginn, F., Singh Ghaleigh, N. and Scott, V. (2014) “‘In case of emergency press here’: framing geoengineering as a response to dangerous climate change”, Wiley Interdisciplinary Reviews: Climate Change, 5(2), pp. 281 – 290.


Marshall, M. (2013) “Get cirrus in the fight against climate change”, New Scientist Environment, (no. 2901), pp. 14.


Martin, J. H., Gordon, R. M. and Fitzwater, S. E. (1990) “Iron in Antarctic waters”, Nature, 345, pp. 156 – 158.


Martin, P., Rutgers van der Loeff, M., Cassar, N., Vandromme, P., d’Ovidio, F., Stemmann, L., Rengarajan, R., Soares, M., González, H. E. and Ebersbach, F. (2013) “Iron fertilization enhanced net community production but not downward particle flux during the Southern Ocean iron fertilization experiment LOHAFEX”, Global Biogeochemical Cycles, 27(3), pp. 871 – 881.


Maruyama, S., Taira, K. and Ishikawa, M. (2000) Method and equipment for pumping up deep water as well as ocean greening method using them Patent no. JP2001-336479.


Mathews, J. A. and Tan, H. (2009) “Biofuels and indirect land use change effects: the debate continues”, Biofuels, Bioproducts and Biorefining, 3(3), pp. 305 – 317.


Matter, J. M. and Kelemen, P. B. (2009) “Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation”, Nature Geoscience, 2(12), pp. 837 – 841.


Lunt, D. J., Ridgwell, A., Valdes, P. J. and Seale, A. (2008) “‘Sunshade World’: A fully coupled GCM evaluation of the climatic impacts of geoengineering”, Geophysical Research Letters, 35(12), pp. L12710.


Maas, A. and Scheffran, J. (2012) “Climate conflicts 2.0? Climate engineering as a challenge for international peace and security”, Security and Peace, 30(4), pp. 193 – 200.


MacCracken, M., Barrett, S., Barry, R., Crutzen, P., Hamburg, S., Lampitt, R., Liverman, D., Lovejoy, T., McBean, G., Parson, E., Seidel, S., Shepherd, J., Somerville, R. and Wigley, T. M. L. (2010) “The Asilomar Conference Recommendations on Principles for Research into Climate Engineering Techniques”, Asilomar International Conference on Climate Intervention Pacific Grove, CA, March 22 – 26, 2010: Climate Change Institute.


MacCracken, M. C., Shin, H. J., Caldeira, K. and Ban-Weiss, G. (2012) “Climate response to imposed solar radiation reductions in high latitudes”, Earth System Dynamics Discussions, 3(2), pp. 715 – 757.


MacMartin, D. G., Caldeira, K. and Keith, D. W. (2014) “Solar geoengineering to limit the rate of temperature change”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2031), pp. 20140134.


MacMartin, D. G., Keith, D. W., Kravitz, B. and Caldeira, K. (2012) “Management of trade-offs in geoengineering through optimal choice of non-uniform radiative forcing”, Nature Climate Change, 3, pp. 365 – 368.


MacMynowski, D. G., Keith, D. W., Caldeira, K. and Shin, H.-J. (2011) “Can we test geoengineering?”, Energy and Environmental Science, 4(12), pp. 5044 – 5052.


Macnaghten, P. and Owen, R. (2011) “Environmental science: good governance for geoengineering”, Nature, 479(7373), pp. 293.


Macnaghten, P. and Szerszynski, B. (2013) “Living the global social experiment: an analysis of public discourse on solar radiation management and its implications for governance”, Global Environmental Change-Human and Policy Dimensions, 23(2), pp. 465 – 474.


March, J. G. and Olsen, J. P. (1998) “The institutional dynamics of international political orders”, International Organization, 52(04), pp. 943 – 969.


Markus, T. and Ginzky, H. (2011) “Regulating climate engineering: paradigmatic aspects of the regulation of ocean fertilization”, Carbon and Climate Law Review (CCLR), (4), pp. 477 – 490.


Markusson, N., Ginn, F., Singh Ghaleigh, N. and Scott, V. (2014) “‘In case of emergency press here’: framing geoengineering as a response to dangerous climate change”, Wiley Interdisciplinary Reviews: Climate Change, 5(2), pp. 281 – 290.


Marshall, M. (2013) “Get cirrus in the fight against climate change”, New Scientist Environment, (no. 2901), pp. 14.


Martin, J. H., Gordon, R. M. and Fitzwater, S. E. (1990) “Iron in Antarctic waters”, Nature, 345, pp. 156 – 158.


Martin, P., Rutgers van der Loeff, M., Cassar, N., Vandromme, P., d’Ovidio, F., Stemmann, L., Rengarajan, R., Soares, M., González, H. E. and Ebersbach, F. (2013) “Iron fertilization enhanced net community production but not downward particle flux during the Southern Ocean iron fertilization experiment LOHAFEX”, Global Biogeochemical Cycles, 27(3), pp. 871 – 881.


Maruyama, S., Taira, K. and Ishikawa, M. (2000) Method and equipment for pumping up deep water as well

as ocean greening method using them Patent no. JP2001-336479.


Mathews, J. A. and Tan, H. (2009) “Biofuels and indirect land use change effects: the debate continues”, Biofuels, Bioproducts and Biorefining, 3(3), pp. 305 – 317.


Matter, J. M. and Kelemen, P. B. (2009) “Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation”, Nature Geoscience, 2(12), pp. 837 – 841.


Matthews, H. D. and Caldeira, K. (2007) “Transient climate–carbon simulations of planetary geoengineering”, Proceedings of the National Academy of Sciences of the United States of America, 104(24), pp. 9949 – 9954.


Matthews, H. D. and Turner, S. E. (2009) “Of mongooses and mitigation: ecological analogues to geoengineering”, Environmental Research Letters, 4(4), pp. 045105.


McClellan, J., Keith, D. W. and Apt, J. (2012) “Cost analysis of stratospheric albedo modification delivery systems”, Environmental Research Letters, 7(3), pp. 034019.


McGlashan, N., Workman, M., Caldecott, B. and Shah, N. (2012) Negative Emissions Technologies: Grantham Institute. Available at:



McGrail, B. P., Schaef, H. T., Ho, A. M., Chien, Y. J., Dooley, J. J. and Davidson, C. L. (2006) “Potential for carbon dioxide sequestration in flood basalts”, Journal of Geophysical Research: Solid Earth, 111(12).


McLaren, D. (2012) “Governance and equity in the development and deployment of negative emissions technologies”, Paper presented at Lund Conference on Earth System Governance, Lund April 18 – 20, 2012.


McNutt, M. K., Abdalati, W., Caldeira, K., Doney, S. C., Falkowski, P. G., Fetter, S., Fleming, J. R., Hamburg, S. P., Morgan, M. G., Penner, J. E., Pierrehumbert, R. T., Rasch, P. J., Russell, L. M., Snow, J. T., Titley, D. W. and Wilcox, J. (2015a) Climate Intervention: Carbon Dioxide Removal and and Reliable Sequestration, Washington, DC: National Reseasrch Council of the National Academies.


McNutt, M. K., Abdalati, W., Caldeira, K., Doney, S. C., Falkowski, P. G., Fetter, S., Fleming, J. R., Hamburg, S. P., Morgan, M. G., Penner, J. E., Pierrehumbert, R. T., Rasch, P. J., Russell, L. M., Snow, J. T., Titley, D. W. and Wilcox, J. (2015b) Climate Intervention: Reflecting Sunlight to Cool Earth, Washington, DC: National Research Council of the National Academies. Meehl, G. A. and Tebaldi, C. (2004) “More intense, more frequent, and longer lasting heat waves in the 21st century”, Science, 305(5686), pp. 994 – 997.


Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J. F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M. and van Vuuren, D. P. P. (2011) “The RCP greenhouse gas concentrations and their extensions from 1765 to 2300”, Climatic Change, 109(1 – 2), pp. 213 – 241.


Mercado, L. M., Bellouin, N., Sitch, S., Boucher, O., Huntingford, C., Wild, M. and Cox, P. M. (2009) “Impact of changes in diffuse radiation on the global land carbon sink”, Nature, 458(7241), pp. 1014 – 1017. 


Mercer, A. M., Keith, D. W. and Sharp, J. D. (2011) “Public understanding of solar radiation management”, Environmental Research Letters, 6(4), pp. 044006.


Metz, B., Davidson, O., de Coninck, H., Loos, M. and Meyer, L. A. (2005) IPCC Special Report on Carbon Dioxide Capture and Storage: Prepared by Working Group III of the Intergovernmental Panel on Climate Change: (Interngovernmental Panel on Climate Change). Cambridge, UK and New York, USA: Cambridge University Press.


Meyer, L. H. (2008) Intergenerational Justice. Stanford Encyclopedia of Philosophy. Meyer, S., Bright, R. M., Fischer, D., Schulz, H. and Glaser, B. (2012) “Albedo impact on the suitability of biochar systems to mitigate global warming”, Environmental Science and Technology, 46(22), pp. 12726 – 12734.


Millard-Ball, A. (2012) “The Tuvalu syndrome: can geoengineering solve climate’s collective actionproblem?” Climatic Change, 110(3 – 4), pp. 1047 – 1066.


Mitchell, D. L. and Finnegan, W. (2009) “Modification of cirrus clouds to reduce global warming”, Environmental Research Letters, 4(4), pp. 045102.


Mitchell, D. L., Mishra, S. and Lawson, R. P. (2011) “Cirrus Clouds and Climate Engineering: New Findings on Ice Nucleation and Theoretical Basis”, in Carayannis, E.G. (ed.) Planet Earth 2011 – Global Warming Challenges and Opportunities for Policy and Practice: InTech, pp. 257-288.


Moellendorf, D. (2002) Cosmopolitan Justice. Oxford and Boulder, Col: Westview Press. Mooney, P., Wetter, K. J. and Bronson, D. (2012) “Darken the sky and whiten the earth – The dangers of geoengineering”, Development Dialogue, 3, pp. 210 – 237.


Moore, J. C., Jevrejeva, S. and Grinsted, A. (2010) “Efficacy of geoengineering to limit 21st century sea-level rise”, Proceedings of the National Academy of Sciences of the United States of America, 107(36), pp. 15699 – 15703.


Moreno-Cruz, J. and Keith, D. (2013) “Climate policy under uncertainty: a case for solar geoengineering”, Climatic Change, 121(3), pp. 1 – 14.


Moreno-Cruz, J., Ricke, K. and Keith, D. (2011) “A simple model to account for regional inequalities in the effectiveness of solar radiation management”, Climatic Change, 110(3-4), pp. 1 – 20.


Moreno-Cruz, J. B. and Smulders, S. (2010) “Revisiting the Economics of Climate Change: The Role of Geoengineering”, The Selected Works of Juan B. Moreno-Cruz. Available at: morenocruz/4.


Moreshet, S., Cohen, Y. and Fuchs, M. (1979) “Effect of increasing foliage reflectance on yield, growth, and physiological behavior of a aryland cotton crop”, Crop Science, 19(6), pp. 863 – 868.


Morgan, M. G., Nordhaus, R. R. and Gottlieb, P. (2013) “Needed: research guidelines for solar radiation management”, Issues in Science and Technology, Spring 2013(3), pp. 37 – 44.


Morgan, M. G. and Ricke, K. (2010) Cooling the Earth through SRM: The need for research and an approach to its governance. An opinion piece for International Risk Governance Council, Available at:


Morrow, D. R. “Ethical Principles for Trials of Climate Intervention Technologies”, Asilomar International Conference on Climate Intervention Technologies, Asilomar, CA, March 23, 2010.


Morrow, D. R., Kopp, R. E. and Oppenheimer, M. (2009) “Toward ethical norms and institutions for climate engineering research”, Environmental Research Letters, 4(4), pp. 045106.


Moss, R. H., Babiker, M., Brinkman, S., Calvo, E., Carter, T. R., Edmonds, J. A., Elgizouli, I., Emori, S., Erda, L., Hibbard, K. A., Jones, R., Kainuma, M., Kelleher, J., Lamarque, J. F., Manning, M., Matthews, B., Meehl, J., Meyer, L., Mitchell, J., Nakicenovic, N., O’Neill, B. C., Pichs, R., Riahi, K., Rose, S. K., Runci, P., Stouffer, R. J., Van Vuuren, D. P., Weyant, J. P., Wilbanks, T. J., Van Ypersele, J. P. and Zurek, M. (2008) Towards new Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies, Geneva: IPCC. Available at:


Mueller, K., Cao, L., Caldeira, K. and Jain, A. (2004) “Differing methods of accounting ocean carbon sequestration efficiency”, Journal of Geophysical Research: Oceans 109(C12).


Muri, H., Kristjánsson, J. E., Storelvmo, T. and Pfeffer, M. A. (2014) “The climatic effects of modifying cirrus clouds in a climate engineering framework”, Journal of Geophysical Research: Atmospheres, 119(7), pp. 2013JD021063.


Muri, H., Niemeier, U. and Kristjánsson, J. E. (2015) “Tropical rainforest response to marine sky brightening climate engineering”, Geophysical Research Letters, 42(8), pp. 2951 – 2960.


Naik, V., Wuebbles, D. J., DeLucia, E. H. and Foley, J. A. (2003) “Influence of geoengineered climate on the terrestrial biosphere”, Environmental Management, 32(3), pp. 373 – 381.


Niemeier, U., Schmidt, H., Alterskjær, K. and Kristjánsson, J. E. (2013) “Solar irradiance reduction via climate engineering: impact of different techniques on the energy balance and the hydrological cycle”, Journal of Geophysical Research-Atmospheres, 118(21), pp. 11,905 – 11,917.


Niemeier, U., Schmidt, H. and Timmreck, C. (2011) “The dependency of geoengineered sulfate aerosol on the emission strategy”, Atmospheric Science Letters, 12(2), pp. 189 – 194.


Niemeier, U. and Timmreck, C. (2015) “What is the limit of stratospheric sulfur climate engineering?”, Atmospheric Chemistry and Physics Discussions, 15(7), pp. 10939 – 10969.


NOAA (2012) Ethics and Issues Surrounding Geo-engineering to Mitigate Climate Change.: NOAA Available at:


Nordhaus, W. D. (2008) A Question of Balance: Weighing the Options on Global Warming Policies. United States: Yale University Press


Nordhaus, W. D. and Boyer, J. (2000) Warming the World: Economic Models of Global Warming. Cambridge MA: MIT Press.


Oldham, P., Szerszynski, B., Stilgoe, J., Brown, C., Eacott, B. and Yuille, A. (2014) “Mapping the landscape of climate engineering”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2031), pp. 20140065.


Oleson, K. W., Bonan, G. B. and Feddema, J. (2010) “Effects of white roofs on urban temperature in a global climate model”, Geophysical Research Letters, 37, pp. L03701.


Olgun, N., Duggen, S., Langmann, B., Hort, M., Waythomas, C. F., Hoffmann, L. and Croot, P. (2013) “Geochemical evidence of oceanic iron fertilization by the Kasatochi volcanic eruption in 2008 and the potential impacts on Pacific sockeye salmon.”, Marine Ecology Progress Series, 488, pp. 81 – 88.


Oliveira, P. J. C., Davin, E. L., Levis, S. and Seneviratne, S. I. (2011) “Vegetation-mediated impacts of trends in global radiation on land hydrology: A global sensitivity study”, Global Change Biology, 17(11), pp. 3453 – 3467.


Olson, R. L. (2011) Geoengineering for Decision Makers, Washington and DC.: Woodrow Wilson Center Report. Available at:


Oltra, C., Sala, R., Sola, R., Di Masso, M. and Rowe, G., & Frewer, L. J. (2010) “Lay perceptions of carbon capture and storage technology”, International Journal of Greenhouse Gas Control, 4(4), pp. 698 – 706.


Ornstein, L., Aleinov, I. and Rind, D. (2009) “Irrigated afforestation of the Sahara and Australian Outback to end global warming”, Climatic Change, 97(3 – 4), pp. 409 – 437.


Orr, J. C. (2004) Modelling of ocean storage of CO2: The GOSAC study. Cheltenham, UK: International Energy Agency Greenhouse Gas R&D Programme (IEAGHG).


Oschlies, A., Koeve, W., Rickels, W. and Rehdanz, K. (2010a) “Side effects and accounting aspects of hypothetical large-scale Southern Ocean iron fertilization”, Biogeosciences, 7(12), pp. 4017 – 4035.


Oschlies, A., Pahlow, M., Yool, A. and Matear, R. (2010b) “Climate engineering by artificial ocean upwelling: channelling the sorcere’s apprentice”, Geophysical Research Letters, 37(4).


Ott, K. (2012) “Might Solar Radiation Management Constitute a Dilemma?”, in Preston, C.J. (ed.) Engineering the climate: The Ethics of Solar Ratiation Management. Plymouth: Lexington Books, pp. 33 – 42.


Page, E. (2006) Climate Change, Justice and Future Generations. Cheltenham: Edward Elgar.


Page, E. (2008) “Distributing the burdens of climate change”, Environmental Politics, 17, pp. 556 – 575.


Page, E. (2012) “Give it up for climate change: a defence of the beneficiary pays principle”, International Theory, 4(2), pp. 300 – 30.


Palmgren, C. R., Morgan, M. G., Bruine de Bruin, W. and Keith, D. W. (2004) “Initial public perceptions of deep geological and oceanic disposal of carbon dioxide”, Environmental Science and Technology, 38(24), pp. 6441 – 6450.


Paludan-Müller, G., Saxe, H., Pedersen, L. B. and Randrup, T. B. (2002) “Differences in salt sensitivity of four deciduous tree species to soil or airborne salt”, Physiologia Plantarum, 114(2), pp. 223 – 230.


Parker, A. (2014) “Governing solar geoengineering research as it leaves the laboratory”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2031), pp. 20140173.


Parkhill, K. and Pidgeon, N. 2011 Public Engagement on Geoengineering Research: Preliminary Report on the SPICE Deliberative Workshops. Working Paper. Cardiff: School of Psychology. Cardiff, UK. Parson, E. A. and Keith, D. W. (2013) “End the deadlock on governance of geoengineering research”, Science, 339(6125), pp. 1278 – 1279.


Partanen, A.-I., Kokkola, H., Romakkaniemi, S., Kerminen, V.-M., Lehtinen, K. E. J., Bergman, T., Arola, A. and Korhonen, H. (2012) “Direct and indirect effects of sea spray geoengineering and the role of injected particle size”, Journal of Geophysical Research: Atmospheres, 117(D2), pp. D02203.


Peng, S.-S., Piao, S., Zeng, Z., Ciais, P., Zhou, L., Li, L. Z. X., Myneni, R. B., Yin, Y. and Zeng, H. (2014) “Afforestation in China cools local land surface temperature”, Proceedings of the National Academy of Sciences of the United States of America 111(8), pp. 2915 – 2919.


Pidgeon, N., Corner, A., Parkhill, K., Spence, A., Butler, C. and Poortinga, W. (2012) “Exploring early responses to geoengineering”, Philosophical Transactions of the Royal Society A, 370(1974), pp. 4176 – 4196.


Pidgeon, N., Parkhill, K., Corner, A. and Vaughan, N. (2013) “Deliberating stratospheric aerosols for climate geoengineering and the SPICE project”, Nature Climate Change, 3(5), pp. 451 – 457.


Pierce, J. R., Weisenstein, D. K., Heckendorn, P., Peter, T. and Keith, D. W. (2010) “Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft”, Geophysical Research Letters, 37.


Pires, J., Alvim-Ferraz, M., Martins, F. and Simoes, M. (2012) “Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept”, Renewable and Sustainable Energy Reviews, 16(5), pp. 3043 – 3053.


Plevin, R. J., O’Hare, M., Jones, A. D., Torn, M. S. and Gibbs, H. K. (2010) “Greenhouse gas emissions from biofuels’ indirect land use change are uncertain but may be much greater than previously estimated”, Environmental Science and Technology-Columbus, 44(21), pp. 8015.


Pogge, T. (2002) World Poverty and Human Rights: Cosmopolitan Responsibilities and Reforms. London: Polity Press.


Pollard, R T, et al. (2009) “Southern Ocean deep-water carbon export enhanced by natural iron fertilization”, Nature, 457, pp. 577 – 581.


Pongratz, J., Lobell, D. B., Cao, L. and Caldeira, K. (2012) “Crop yields in a geoengineered climate”, Nature Climate Change, 2(2), pp. 101 – 105.


Pope, F. D., Braesicke, P., Grainger, R. G., Kalberer, M., Watson, I. M., Davidson, P. J. and Cox, R. A. (2012) “Stratospheric aerosol particles and solar-radiation management”, Nature Climate Change, 2(10), pp. 713 – 719.


Post, E., Mads C. Forchhammer, M. Syndonia Bret-Harte, Terry V. Callaghan, Torben R. Christensen, Bo Elberling, Anthony D. Fox, Olivier Gilg, David S. Hik, Toke T. Høye, Rolf A. Ims, Erik Jeppesen, David R. Klein, Jesper Madsen, A. David McGuire, Søren Rysgaard, Daniel E. Schindler, Ian Stirling, Mikkel P. Tamstorf, Nicholas J.C. Tyler, Rene van der Wal, Jeffrey Welker, Philip A. Wookey, Niels Martin Schmidt and Aastrup, P. (2009) “Ecological dynamics across the Arctic associated with recent climate change “, Science, 325(5946), pp. 1355 – 1358.


Poumadère, M., Bertoldo, R. and Samadi, J. (2011) “Public perceptions and governance of controversial technologies to tackle climate change: nuclear power, carbon capture and storage, wind, and geoengineering”, Wiley Interdisciplinary Reviews: Climate Change, 2(5), pp. 712 – 727.


Powell, T. W. R. and Lenton, T. M. (2012) “Future carbon dioxide removal via biomass energy constrained by agricultural efficiency and dietary trends “, Energy and Environmental Science 5(8), pp. 8116 – 8133.


Preston, C. J. (2012) “Solar Radiation Management and Vulnerable Populations: The Moral Deficit and its Prospects”, in Preston, C.J. (ed.) Engineering the Climate: The Ethics of Solar Radiation Management. Lanham, MD: Lexington Press, pp. 77 – 94.


Preston, C. J. (2013) “Ethics and geoengineering: reviewing the moral issues raised by solar radiation management and carbon dioxide removal”, Wiley Interdisciplinary Reviews: Climate Change, 4(1), pp. 23 – 37.


Pringle, K. J., Carslaw, K. S., Fan, T., Mann, G. W., Hill, A., Stier, P., Zhang, K. and Tost, H. (2012) “A multi-model assessment of the impact of sea spray geoengineering on cloud droplet number”, Atmospheric Chemistry and Physics, 12(23), pp. 11647 – 11663.


Proelss, A. (2009) Legal Opinion on the Legality of the LOHAFEX Marine Research Experiment under International Law, Kiel: Walther-Schücking-Institut for International Law.


Proelss, A. (2010) “International environmental law and the challenge of climate change”, German Yearbook of International Law, 53, pp. 65 – 88.


Proelss, A. (2012) “Geoengineering and international law”, S+F Sicherheit und Frieden, 30(4), pp. 205 – 211.


Proelss, A. (2013) “The ‘Erika III’ Package: Progress or Breach of International Law? “, in Koch, H.-J., König, D., Sanden, J. & Verheyen, R. (eds.) Climate Change and Environmental Hazards Related to Shipping: An International Legal Framework. Leiden: Martinus Nijhoff Publishers.


Rahaman, M. S. A., Cheng, L.-H., Xu, X.-H., Zhang, L. and Chen, H.-L. (2011) “A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes”, Renewable and Sustainable Energy Reviews, 15(8), pp. 4002 – 4012.


Ralston, S. J. (2009) “Engineering an artful and ethical solution to the problem of global warming”, Review of Policy Research, 26(6), pp. 821 – 837.


Rasch, P. J. (2010) Geoengineering II: The Scientific Basis and Engineering Challenges. Washington, DC: Committee on Science, Space, and Technology. Subcommittee on Energy.


Rasch, P. J., Latham, J. and Chen, C.-C. (2009) “Geoengineering by cloud seeding: influence on sea ice and climate system”, Environmental Research Letters, 4(4), pp. 045112.


Rasch, P. J., Tilmes, S., Turco, R. P., Robock, A., Oman, L., Chen, C. C., Stenchikov, G. L. and Garcia, R. R. (2008) “An overview of geoengineering of climate using stratospheric sulphate aerosols”, Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 366(1882), pp. 4007 – 4037.


Rayfuse, R., Lawrence, M. G. and Gjerde, K. M. (2008) “Ocean fertilisation and climate change: the need to regulate emerging high sea uses”, International Journal of Marine and Coastal Law, 23, pp. 297 – 326.


Rayner, S., Heyward, C., Kruger, T., Pidgeon, N., Redgwell, C. and Savulescu, J. (2013) “The Oxford Principles”, Climatic Change, 121(3), pp. 499 – 512.


Rayner, S., Redgwell, C., Savulescu, J., Pidgeon, N. and Kruger, T. (2009) Memorandum on draft principles for the conduct of geoengineering research. London, UK: House of Commons Science and Technology Committee enquiry into The Regulation of Geoengineering.


Reichwein, D. (2012) Basic Instruments to Tackle Risks and Uncertainties in In- ternational Environmental Law. In: Amelung, D. & al., e. (eds.) Beyond calculation. Climate Engineering risks from a social sciences perspective. Heidelberg: Forum Marsilius Kolleg.


Reichwein, D., Hubert, A.-M., Irvine, P. J., Benduhn, F. and Lawrence, M. G. (2015 in review) “State responsibility for environmental harm from climate engineering”, Carbon and Climate Law Review.


Reynolds, J. (2011) “The regulation of climate engineering”, Law, Innovation and Technology, 3(1), pp. 113 – 136.


Reynolds and Fleurke (2013) “Climate engineering research: a precautionary response to climate change?”, Carbon and Climate Law Review (2/2013), pp. 101 – 107.


Ricke, K., Allen, M. R., Ingram, W., Keith, D. and Granger, M. M. “Global and Regional Climate Responses Solar Radiation Management: Results from a climateprediction. net Geoengineering Experiment”. EGU General Assembly 2010, Vienna, Austria, 2 – 7 May, 11719 – 11719.


Ricke, K., Morgan, M. G. and Allen, M. R. (2010) “Regional climate response to solar-radiation management”, Nature Geoscience, 3(8), pp. 537 – 541.


Rickels, W., Klepper, G., Dovern, J., Betz, G., Brachatzek, N., Cacean, S., Güssow, K., Heintzenberg, J., Hiller, S., Hoose, C., Leisner, T., Oschlies, A., Platt, U., Proelß, A., Renn, O., Schäfer, S. and Zürn, M. (2011) Large-Scale Intentional Interventions into the Climate System? Assessing the Climate Engineering Debate. Scoping Report Conducted on Behalf of the German Federal Ministry of Education and Research, Kiel: Kiel Earth Institute. Available at:


Rickels, W. and Lontzek, T. (2012) “Optimal Global Carbon Management with Ocean Sequestration”, Oxford Economic Papers, in press.


Rickels, W., Rehdanz, K. and Oschlies, A. (2010) “Methods for greenhouse gas offset accounting: A case study of ocean iron fertilization”, Ecological Economics, 69(12), pp. 2495 – 2509.


Ridgwell, A., Freeman, C. and Lampitt, R. (2012) “Geoengineering: taking control of our planet’s climate?”, Philosophical Transactions of the Royal Society A: Physical, Mathematical and Engineering Sciences, 370(1974), pp. 4163 – 5.


Ridgwell, A., Singarayer, J. S., Hetherington, A. M. and Valdes, P. J. (2009) “Tackling regional climate change by leaf albedo bio-geoengineering”, Current Biology, 19(2), pp. 146 – 150.


Robock, A. (2000) “Volcanic eruptions and climate”, Reviews of Geophysics, 38(2), pp. 191 – 219.


Robock, A. (2008) “20 reasons why geoengineering may be a bad idea”, Bulletin of the Atomic Scientists, 64(2), pp. 14 – 18.


Robock, A. (2011) “Geoengineering research”, Issues in Science and Technology, 27(2), pp. 5 – 9.


Robock, A. (2012) “Is geoengineering research ethical?”, S+F Sicherheit und Frieden, 30(4), pp. 226 – 229.


Robock, A., Bunzl, M., Kravitz, B. and Stenchikov, G. L. (2010) “A test for geoengineering?”, Science, 327(5965), pp. 530 – 531.


Robock, A., Marquardt, A., Kravitz, B. and Stenchikov, G. (2009) “Benefits, risks, and costs of stratospheric geoengineering”, Geophysical Research Letters, 36, pp. 9.


Robock, A., Oman, L. and Stenchikov, G. L. (2008) “Regional climate responses to geoengineering with tropical and Arctic SO2 injections”, Journal of Geophysical Research-Atmospheres, 113(D16), pp. D16101.


Roderick, M. L., Farquhar, G. D., Berry, S. L. and Noble, I. R. (2001) “On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation”, Oecologia, 129(1), pp. 21 – 30.


Rowe, G. and Frewer, L. J. (2005) “A typology of public engagement mechanisms. “, Science Technology and

Human Values, 30(2), pp. 251 – 290.


RWE (2012) Tilbury Biomass Power Station. Available at: rwe-npower/about-us/our-businesses/power-generation/tilbury/tilbury-biomass-power-station/. 


Sala, O. E., Chapin III, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M., Mooney, H. A., Oesterheld, M., Poff,

N. L., Sykes, M. T., Walker, B. H. and Wall, D. H. (2000) “Global biodiversity scenarios for the tear 2100”, Science, 287(5459), pp. 1770 – 1774


Salter, S., Sortino, G. and Latham, J. (2008) “Sea-going hardware for the cloud albedo method of reversing global warming”, Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 366(1882), pp. 3989 – 4006.


Sarmiento, J., Slater, R. D., Dunne, J., Gnanadesikan, A. and Hiscock, M. R. (2010) “Efficiency of small scale carbon mitigation by patch iron fertilization”, Biogeoscience, 7, pp. 3593 – 3624.


Sassen, K., O’C Starr, D., Mace, G. G., Poellot, M. R., Melfi, S. H., Eberhard, W. L., Spinhirne, J. D., Eloranta, E., Hagen, D. E. and Hallett, J. (1995)“The 5-6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols”, Journal of the Atmospheric Sciences, 52(1), pp. 97 – 123.


Sathaye, K. J., Hesse, M. A., Cassidy, M. and Stockli, D. F. (2014) “Constraints on the magnitude and rate of CO2 dissolution at Bravo Dome natural gas field”, Proceedings of the National Academy of Sciences, 111(43), pp. 15332 – 15337.


Sathre, R., Chester, M., Cain, J. and Masanet, E. (2011) “A framework for environmental assessment of CO2 capture and storage systems. 7th Biennial International Workshop: Advances in Energy Studies”, Energy, 37(1), pp. 540 – 548.


Savile, C. K. and Lalonde, J. J. (2011) “Biotechnology for the acceleration of carbon dioxide capture and sequestration”, Current Opinion in Biotechnology, 22(6), pp. 818 – 823.


Schaeffer, M., Hare, W., Rahmstorf, S. and Vermeer, M. (2012) “Long-term sea-level rise implied by 1.5C and 2C warming levels”, Nature Climate Change, 2(12), pp. 867 – 870.


Schäfer, S., Irvine, P. J., Hubert, A.-M., Reichwein, D., Low, S., Stelzer, H., Maas, A. and Lawrence, M. G. (2013a) “Field tests of solar climate engineering”, Nature Climate Change, 3(9), pp. 766 – 766.


Schäfer, S. and Low, S. (2014) “Asilomar moments: formative framings in recombinant DNA and solar climate engineering research”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2031), pp. 20140064.


Schäfer, S., Maas, A. and Irvine, P. J. (2013b) “Bridging the gaps in interdisciplinary research on solar radiation management”, GAIA-Ecological Perspectives for Science and Society, 22(4), pp. 242 – 247.


Schäfer, S., Maas, A., Stelzer, H. and Lawrence, M. G. (2014) “Earth’s future in the Anthropocene: technological interventions between piecemeal and utopian social engineering”, Earth’s Future, 2(4), pp. 239 – 243.


Schallock, J. (2015) Effektivitätsstudie zur Injektion von Sulfataerosol in die Stratosphäre. Diploma, Johannes Gutenberg-Universität Mainz, Mainz.


Scheffran, J. and Cannaday, T. (2013) “Resistance Against Climate Change Policies: The Conflict Potential of Non-fossil Energy Paths and CE.”, in Balazs, B., Burnley, C., Comardicea, I., Maas, A. & Roffey, R. (eds.) Global Environmental Change: New Drivers for Resistance, Crime and Terrorism? Baden-Baden: Nomos.


Schelling, T. C. (1996) “The Economic Diplomacy of Geoengineering”, Climatic Change, 33(3), pp. 303 – 307.


Schmidt, H., Alterskjær, K., Bou Karam, D., Boucher, O., Jones, A., Kristjánsson, J. E., Niemeier, U., Schulz, M., Aaheim, A., Benduhn, F., Lawrence, M. and Timmreck, C. (2012a) “Solar irradiance reduction to counteract radiative forcing from a quadrupling of CO2: climate responses simulated by four earth system models”, Earth System Dynamics, 3(1), pp. 63 – 78.


Schmidt, H., Niemeier, U., Timmreck, C., Aaheim, A., Romstad, B., Wei, T., Kristjánsson, J. E., Alterskjær, K., Muri, H. Ø., Lawrence, M. G., Benduhn, F., Schulz, M., Bou Karam, D. and Boucher, O. (2012b) The FP7 Project IMPLICC: Implications and Risks of Engineering Solar Radiation to Limit Climate Change. Final Publishable Summary Report. Available at: other_documents/implicc_final_report_20121130_publishable_s ummary.pdf.


Scott, D. (2012) “Geoengineering and environmental ethics”, Nature Education Knowledge, 3(10), pp. 10.


Scott K. N. (2013) “Regulating ocean fertilization under international law: the risks”, Carbon and Climate Law Review pp. 108 – 116.


Scott, V., Gilfillan, S., Markusson, N., Chalmers, H. and Haszeldine, R. S. (2013) “Last chance for carbon capture and storage”, Nature Climate Change, 3(2), pp. 105 – 111.


Scott, V., Haszeldine, R. S., Tett, S. F. B. and Oschlies, A. (2015) “Fossil fuels in a trillion tonne world”, Nature Climate Change, 5(5), pp. 419 – 423.


Seidel, D. J., Feingold, G., Jacobson, A. R. and Loeb, N. (2014) “Detection limits of albedo changes induced by climate engineering”, Nature Climate Change, 4(2), pp. 93 – 98.


Shackley, S. and Sohi, S. (2011) An assessment of the benefits and issues associated with the application of biochar to soil: United Kingdom Department for Environment, Food and Rural Affairs, and Department of Energy and Climate Change. Available at:


Shao, Y., Mirza, M. S. and Wu, X. (2006) “CO2 sequestration using calcium-silicate concrete”, Canadian Journal of Civil Engineering, 33(6), pp. 77 – 784.


Shepherd, J. G. (2009) Hearing on Geoengineering. US House of Representatives Committee on Science and Technology. Shepherd, J. G., Cox, P., Haigh, J., Keith, D. W., Launder, B., Mace, G., MacKerron, G., Pyle, J., Rayner, S., Redgwell, C. and Watson, A. (2009) Geoengineering the Climate: Science, Governance

and Uncertainty. London: The Royal Society.


Singarayer, J. S., Ridgwell, A. and Irvine, P. (2009) “Assessing the benefits of crop albedo biogeoengineering”, Environmental Research Letters, 4(4), pp. 8.


Smetacek, V., Klaas, C., Strass, V. H., Assmy, P., Montresor, M., Cisewski, B., Savoye, N., Webb, A., d’Ovidio, F., Arrieta, J. M., Bathmann, U., Bellerby, R., Berg, G. M., Croot, P., Gonzalez, S., Henjes, J., Herndl, G. J., Hoffmann, L. J., Leach, H., Losch, M., Mills, M. M., Neill, C., Peeken, I., Rottgers, R., Sachs, O., Sauter, E., Schmidt, M. M., Schwarz, J., Terbruggen, A. and Wolf-Gladrow, D. (2012) “Deep carbon export from a Southern Ocean iron-fertilized diatom bloom”, Nature, 487(7407), pp. 313 – 319.


Smith, P. T. (2012) “Domination and the Ethics of Solar Radiation Management”, in Preston, C. J. (ed.) Engineering the Climate: The Ethics of Solar Radiation Management. Plymouth: Lexington Books, pp. 43 – 61.


Socolow, R., Desmond, M., Alnes, R., Balckstock, J., Bolland, O., Kaarsberg, T., Lewis, N., Mazzotti, M., Pfeffer, A., Siirola, J., Smit, B. and Wilcox, J. (2011) Direct Air Capture of CO2 with Chemicals: A Technology Assessment for the APS Panel on Public Affairs: American Physical Society, Available at:


Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. and Miller, H. L. (2007) “Climate Change 2007: The Physical Science Basis”, in S. Solomon, D.Q., M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (ed.) Climate Change 2007: The Physical Science Basis. Contribution of working Group 1 to the Fourth Assesment Report of the Intergovernmental Panel on Climate Change Cambridge: Cambridge University Press, pp. 996 pp.


SRMGI (2012) Solar Radiation Management: the Governance of Research, Available at: 12.pdf.


Stapleton, A. E. (1992) “Ultraviolet radiation and plants: burning questions”, Plant Cell, 4(11), pp. 1353 – 1358.


Stenchikov, G., Hamilton, K., Stouffer, R. J., Robock, A., Ramaswamy, V., Santer, B. and Graf, H. F. (2006) “Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models”, Journal of Geophysical Research: Atmospheres, 111(D7).


Stevens, B. and Boucher, O. (2012) “Climate science: the aerosol effect”, Nature, 490(7418), pp. 40 – 41. Stewart, C. E., Zheng, J., Botte, J. and Cotrufo, M. F. (2013) “Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils”, GCB Bioenergy, 5(2), pp. 153 – 164.


Stilgoe, J., Owen, R. and Macnaghten, P. (2013) “Developing a framework for responsible innovation”, Research Policy, 42(9), pp. 1568 – 1580.


Stirling, A. (2008) “‘Opening up’ and ‘closing down’: power, participation, and pluralism in the social appraisal of technology”, Science, Technology, and Human Values, 33(2), pp. 262 – 294.


Stone, D. A., Allen, M. R., Stott, P. A., Pall, P., Min, S. K., Nozawa, T. and Yukimoto, S. (2009) “The detection and attribution of human influence on climate”, Annual Review of Environment and Resources, 34, pp. 1 – 16.


Storelvmo, T. and Herger, N. (2014) “Cirrus cloud susceptibility to the injection of ice nuclei in the upper troposphere”, Journal of Geophysical Research: Atmospheres, 119(5), pp. 2375 – 2389.


Storelvmo, T., Kristjansson, J. E., Muri, H., Pfeffer, M., Barahona, D. and Nenes, A. (2013) “Cirrus cloud seeding has potential to cool climate”, Geophysical Research Letters, 40(1), pp. 178 – 182.


Stott, P. A., Stone, D. A. and Allen, M. R. (2004) “Human contribution to the European heatwave of 2003”, Nature, 432(7017), pp. 610 – 614.


Stott, P. A., Gillett, N. P., Hegerl, G. C., Karoly, D. J., Stone, D. A., Zhang, X. and Zwiers, F. (2010) “Detection and attribution of climate change: a regional perspective”, Wiley Interdisciplinary Reviews: Climate Change, 1(2), pp. 192 – 211.


Strand, S. E. and Benford, G. (2009) “Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments”, Environmental Science and Technology, 43(4), pp. 1000 – 1007.


Streibel, M., Finley, R. J., Martens, S., Greenberg, S., Möller, F. and Liebscher, A. (2014) “From pilot to demo scale–Comparing Ketzin results with the Illinois Basin-Decatur project”, Energy Procedia, 63, pp. 6323 – 6334.


Strong, A. L., Chisholm, S. W., Miller, C. and Cullen, J. J. (2009a) “Ocean fertilization: time to move on”, Nature, 67, pp. 347 – 348.


Strong, A. L., Cullen, J. J. and Chisholm, S. W. (2009b) “Ocean fertilization: science, policy, and commerce”, Oceanography, 22(Special issue 3), pp. 236 – 261.


Stuart, G., Stevens, R., Partanen, A.-I., Jenkins, A., Korhonen, H., Forster, P., Spracklen, D. and Pierce, J. (2013) “Reduced efficacy of marine cloud brightening geoengineering due to in-plume aerosol coagulation: parameterization and global implications”, Atmospheric Chemistry and Physics Discussions, 13(7), pp. 18679 – 18711.


Suzuki, T. (2005) Method for evaluating the amount of immobilized CO2 in artificial upwelling sea area, Patent no. JP2003000315219. [Online].


Svoboda, T. and Irvine, P. J. (2014) “Ethical and Technical Challenges in Compensating for Harm Due to Solar Radiation Management Geoe ngineering”, Ethics, Policy and Environment, 17(2), pp. 157 – 174.


Svoboda, T., Keller, K., Goes, M. and Tuana, N. (2011) “Sulfate aerosol geoengineering: the question of justice”, Public Affairs Quarterly, 25(3), pp. 157 – 179.


Swann, A. L. S., Fung, I. Y. and Chiang, J. C. H. (2010) “Mid-latitude afforestation shifts general circulation and tropical precipitation”, Proceedings of the National Academy of Sciences, 109(3), pp. 712 – 716.


Swap, R., Garstang, M., Greco, S., Talbot, R. and Kållberg, P. (1992) “Saharan dust in the Amazon Basin”, Tellus B, 44(2), pp. 133 – 149.


Swart, R. and Marinova, N. (2010) “Policy options in a worst case climate change world”, Mitigation and Adaptation Strategies for Global Change, 15(6), pp. 531 – 549.


Tagesson, T., Mastepanov, M., Tamstorf, M. P., Eklundh, L., Schubert, P., Ekberg, A., Sigsgaard, C., Christensen, T. R. and Ström, L. (2012) “High-resolution satellite data reveal an increase in peak growing season gross primary production in a high-Arctic wet tundra ecosystem 1992 – 2008”, International Journal of Applied Earth Observation and Geoinformation, 18, pp. 407 – 416.


Tedsen, E. and Homann, G. (2013) “Implementing the Precautionary Principle for Climate Engineering”, Carbon and Climate Law Review pp. 90 – 100.


Teller, E., Hyde, R. and Ishikawa, M. (2003) Active Stabilization of Climate: Inexpensive, Low-Risk, Near-Term Options for Preventing Global Warming and Ice Ages via Technologically Varied Solar Radiative Forcing, Livermore, CA: Lawrence Livermore National Laboratory.


Terwel, B. W. and Daamen, D. D. L. (2012) “Initial public reactions to carbon capture and storage (CCS): differentiating general and local views”, Climate Policy, 12(3), pp. 288 – 300.


The Member States of the European Union (2012a) Consolidated Version of the Treaty on European Union. Maastricht: EUR-Lex.


The Member States of the European Union (2012b) Consolidated Version of the Treaty on the Functioning of the European Union. Maastricht: EUR-Lex. 


Thornton, P. E., Doney, S. C., Lindsay, K., Moore, J. K., Mahowald, N., Randerson, J. T., Fung, I., Lamarque, J.-F., Feddema, J. J. and Lee, Y.-H. (2009) “Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model”, Biogeosciences, 6(10), pp. 2099 – 2120.


Tilmes, S., Fasullo, J., Lamarque, J.-F., Marsh, D. R., Mills, M., Alterskjær, K., Muri, H., Kristjánsson, J. E., Boucher, O., Schulz, M., Cole, J. N. S., Curry, C. L., Jones, A., Haywood, J., Irvine, P. J., Ji, D., Moore, J. C., Karam, D. B., Kravitz, B., Rasch, P. J., Singh, B., Yoon, J.-H., Niemeier, U., Schmidt, H., Robock, A., Yang, S. and Watanabe, S. (2013) “The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP)”, Journal of Geophysical Research: Atmospheres, 118(19), pp. 11036 – 11058.


Tilmes, S., Garcia, R. R., Kinnison, D. E., Gettelman, A. and Rasch, P. J. (2009) “Impact of geoengineered aerosols on the troposphere and stratosphere”, Journal of Geophysical Research: Atmospheres, 114, pp. 22.


Tilmes, S., Kinnison, D. E., Garcia, R. R., Salawitch, R., Canty, T., Lee-Taylor, J., Madronich, S. and Chance, K. (2012) “Impact of very short-lived halogens on stratospheric ozone abundance and UV radiation in a geo-engineered atmosphere”, Atmospheric Chemistry and Physics, 12(22), pp. 10945 – 10955.


Tilmes, S., Muller, R. and Salawitch, R. (2008) “The sensitivity of polar ozone depletion to proposed geoengineering schemes”, Science, 320(5880), pp. 1201 – 1204.


Timmreck, C., Graf, H. F., Lorenz, S. J., Niemeier, U., Zanchettin, D., Matei, D., Jungclaus, J. H. and Crowley, T. J. (2010) “Aerosol size confines climate response to volcanic super-eruptions”, Geophysical Research Letters, 37(24).


Trick, C., Billb, B. D., Cochlan, W. P., Wells, M. L., Trainer, V. L. and Pickell, L. D. (2010) “Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas”, Proceedings of the National Academy of Sciences, 107(13), pp. 5887 – 92.


Tsvetsinskaya, E. A., Schaaf, C. B., Gao, F., Strahler, A. H., Dickinson, R. E., Zeng, X. and Lucht, W. (2002) “Relating MODIS-derived surface albedo to soils and rock types over Northern Africa and the Arabian peninsula”, Geophysical Research Letters, 29(9), pp. 67 – 1 – 67 – 4.


Tuana, N. (2013) “The Ethical Dimensions of Geoengineering: Solar Radiation Management through Sulphate Particle Injection”, Working Paper, Geoengineering Our Climate Working Paper and Opinion Article Series.,


Tuana, N., Sriver, R. L., Svoboda, T., Olson, R., Irvine, P. J., Haqq-Misra, J. and Keller, K. (2012) “Towards integrated ethical and scientific analysis of geoengineering: a research agenda”, Ethics, Policy and Environment, 15(2), pp. 136 – 157.


Uddin, M. N. and Marshall, D. R. (1988) “Variation in epicuticular wax content in wheat”, Euphytica, 38(1), pp. 3 – 9.


UK House of Commons Science and Technology Committee (2010) The Regulation of Geoengineering, London: UK House of Commons. Available at:


Unruh, G. C. and Carrillo-Hermosilla, J. (2006) “Globalizing carbon lock-in”, Energy Policy, 34(10), pp. 1185 – 1197.


Upham, P. and Roberts, T. (2011a) “Public perceptions of CCS in context: Results of NearCO2 focus groups in UK, Belgium, the Netherlands, Germany, Spain and Poland”, Energy Procedia, 4, pp. 6338 – 6344.


Upham, P. and Roberts, T. (2011b) “Public perceptions of CCS: emergent themes in pan-European focus groups and implications for communications.”, International Journal of Greenhouse Gas Control, 5(5), pp. 1359 – 1367.


Van Vuuren, D. P., Edmonds, J. A., Kainuma, M., Riahi, K. and Weyant, J. (2011a) “A special issue on the RCPs”, Climatic Change, 109(1), pp. 1 – 4.


Van Vuuren, D. P., Stehfest, E., den Elzen, M. G. J., Kram, T., van Vliet, J., Deetman, S., Isaac, M., Goldewijk, K. K., Hof, A., Beltran, A. M., Oostenrijk, R. and van Ruijven, B. (2011b) “RCP2. 6: exploring the possibility to keep global mean temperature increase below 2 C”, Climatic Change, 109 (1 – 2), pp. 95 – 116.


Vaughan, N. E. and Lenton, T. M. (2011) “A review of climate geoengineering proposals”, Climatic Change, 109(3 – 4), pp. 745 – 790.


Verlaan, P. (2009) “Geo-engineering, the law of the sea, and climate change”, Carbon and Climate Law Review, (04/2009), pp. 446 – 458.


Vichi, M., Navarra, A. and Fogli, P. G. (2013) “Adjustment of the natural ocean carbon cycle to negative emission rates”, Climatic Change, 118(1), pp. 105 – 118.


Victor, D. G. (2008) “On the regulation of geoengineering”, Oxford Review of Economic Policy, 24(2), pp. 322 – 336.


Victor, D. G., Morgan, M. G., Apt, J., Steinbruner, J. and Ricke, K. L. (2013) “The truth about geoengineering: science fiction and science fact”, Foreign Affairs, 92(2).


Virgoe, J. (2009) “International governance of a possible geoengineering intervention to combat climate change”, Climatic Change, 95(1 – 2), pp. 103 – 119.


Volk, T. and Hoffert, M. I. (1985) “Ocean carbon pumps, analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes”, Geophysical Monographs, 32, pp. 99 – 110.


Volodin, E. M., Kostrykin, S. V. and Ryaboshapko, A. G. (2011) “Climate response to aerosol injection at different stratospheric locations”, Atmospheric Science Letters, 12, pp. 381 – 385.


Wallace, D. W. R., Law, C. S., Boyd, P. W., Collos, Y., Croot, P., Denman, K., Lam, P. J., Riebesell,

U., Takeda, S. and Williamson, P. (2010) Ocean Fertilization: A Scientific Summary for Policy Makers, Paris: IOC/UNESCO.


Wang, H., Rasch, P. J. and Feingold, G. (2011) “Manipulating marine stratocumulus cloud amount and albedo: a process-modelling study of aerosol-cloud-precipitation interactions in response to injection of cloud condensation nuclei”, Atmospheric Chemistry and Physics, 11(9), pp. 4237 – 4249.


Watson, M. (2013) “Why we’d be mad to rule out climate engineering”, The Guardian, 8 October 2013.


Weiland, P. (2010) “Biogas production: current status and perspectives”, Applied Microbiology and Biotechnology, 85, pp. 849 – 860.


Weisser, D. (2007) “A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies”, Energy, 32(9), pp. 1543 – 1559.


Wigley, T. M. L. (2006) “A combined mitigation/geoengineering approach to climate stabilization”, Science, 314(5798), pp. 452 – 454.


Williamson, P., Wallace, D. W., Law, C. S., Boyd, P. W., Collos, Y., Croot, P., Denman, K., Riebesell, U., Takeda, S. and Vivian, C. (2012) “Ocean fertilization for geoengineering: a review of effectiveness, environmental impacts and emerging governance”, Process Safety and Environmental Protection, 90(6), pp. 475 – 488.


Winter, G. (2011) “CE and international law: last resort or the end of humanity?”, Review of European Community and International Environmental Law, 20, pp. 277 – 289.


Wise, M. E., Baustian, K. J., Koop, T., Freedman, M. A., Jensen, E. J. and Tolbert, M. A. (2012) “Depositional ice nucleation onto crystalline hydrated NaCl particles: a new mechanism for ice formation in the troposphere”, Atmospheric Chemistry and Physics, 12(2), pp. 1121 – 1134.


Wolfrum, R. and Matz, N. (2003) Conflicts in International Environmental Law. Berlin: Springer. 


Wong, P.-H., Douglas, T. and Savulescu, J. (2014) Compensation for Geoengineering Harms and No-Fault Climate Change Compensation: Institute for Science, Innovation and Society and Oxford Uehiro

Centre for Practical Ethics.


Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. and Joseph, S. (2010) “Sustainable biochar to mitigate global climate change”, Nature Communications, 1(5), pp. 56 – 56.


Worrall, F., Bell, M. and Bhogal, A. (2010) “Assessing the probability of carbon and greenhouse gas benefit from the management of peat soils”, Science of the Total Environment, 408(13), pp. 2657 – 2666.


Wüstenhagen, R., Wolsink, M. and Bürer, M. J. (2007) “Social acceptance of renewable energy innovation: an introduction to the concept.”, Energy policy, 35(5), pp. 2683 – 2691.


Wylie, D., Jackson, D. L., Menzel, W. P. and Bates, J. J. (2005) “Trends in global cloud cover in two decades of HIRS observations”, Journal of Climate, 18(15), pp. 3021 – 3031.


Xia, L., Robock, A., Cole, J., Curry, C. L., Ji, D., Jones, A., Kravitz, B., Moore, J. C., Muri, H., Niemeier, U., Singh, B., Tilmes, S., Watanabe, S. and Yoon, J.-H. (2014) “Solar radiation management impacts on agriculture in China: a case study in the Geoengineering Model Intercomparison Project (GeoMIP)”, Journal of Geophysical Research: Atmospheres, 119(14), pp. 8695 – 8711.


Yool, A., Shepherd, J. G., Bryden, H. L. and Oschlies, A. (2009) “Low efficiency of nutrient translocation for enhancing oceanic uptake of carbon dioxide”, Journal of Geophysical Research-Oceans, 114.


Young, R. E., Houben, H. and Toon, O. B. (1994) “Radiatively forced dispersion of the Mt. Pinatubo volcanic cloud and induced temperature perturbations in the stratosphere during the first few months following the eruption”, Geophysical Research Letters, 21(5), pp. 36 – 372.


Zedalis, R. J. (2010) “Climate change and the National Academy of Sciences’ idea of geoengineering: one American academy’s perspective on first considering the text of existing international agreements”, European Energy and Environmental Law Review (EEELR), 19(1), pp. 18 – 32.


Zhang, Y., Qu, Y., Wang, J., Liang, S. and Liu, Y. (2012) “Estimating leaf area index from MODIS and surface meteorological data using a dynamic Bayesian network”, Remote Sensing of Environment, 127, pp. 30 – 43.


Zhou, S. and Flynn, P. (2005) “Geoengineering downwelling ocean currents: a cost assessment”, Climatic Change, 71, pp. 203 – 220.


Zürn, M. and Schäfer, S. (2013) “The paradox of climate engineering”, Global Policy, 3(4), pp. 266 – 277.






Zurück Seite 2

Anfang Seite 1


Ein künstliches Klima durch SRM Geo-Engineering



 Sogenannte "Chemtrails"     sind SRM Geoengineering-   Forschungs-Experimente


 Illegale Feldversuche der   SRM Technik, weltweit.



Illegale militärische und zivile GE-Forschungen finden in einer rechtlichen Grauzone statt.


Feldversuche oder illegale SRM Interventionen wurden nie in nur einem einzigen Land der Welt,  je durch ein Parlament gebracht, deshalb sind sie nicht legalisiert und finden in einer rechtlichen Grauzone der Forschung statt. Regierungen wissen genau, dass sie diese Risiko-Forschung, die absichtliche Veränderung mit dem Wetter nie durch die Parlamente bekommen würden..


HAARP - Die Büchse der Pandora in militärischen Händen



Illegale zivile und militärische SRM Experimente finden 7 Tage die Woche (nonstop) rund um die Uhr statt. 


Auch Nachts - trotz Nacht-



Geo-Engineering Forschung


Wissenschaftler planen 10 bis 100 Megatonnen hoch toxischer Materialien wie Aluminium, synthetischen Nanopartikeln jedes Jahr in unserer Atmosphäre auszubringen.


Die Mengenangaben von SRM Materialien werden neuerdings fast immer in Teragramm berechnet. 


  1 Teragramm  = 1 Megatonne

  1 Megatonne  = 1 Million Tonnen



SAI = Stratosphärische

Aerosol Injektionen mit toxischen Materialen wie:


  • Aluminiumoxide
  • Black Carbon 
  • Zinkoxid 
  • Siliciumkarbit
  • Diamant
  • Bariumtitanat
  • Bariumsalze
  • Strontium
  • Sulfate
  • Schwefelsäure 
  • Schwefelwasserstoff
  • Carbonylsulfid
  • Ruß-Aerosole
  • Schwefeldioxid
  • Dimethylsulfit
  • Titan
  • Lithium
  • Lithiumsalze
  • Kohlenstoff Flugasche 
  • Kalkstaub
  • Titandioxid
  • Natriumchlorid
  • Meersalz 
  • Calciumcarbonat
  • Siliciumdioxid
  • Silicium
  • Bismuttriiodid (BiI3
  • Polymere
  • Polymorph von TiO2
  • Dialektrika:
  • Sulfate
  • Halogenide und
  • Kohlenstoffverbindungen
  • Halbleiter:
  • Indiumantimonid (InSb)
  • Bleitellunid (PbTe)
  • Indiumarsen (InAs)
  • Carbonat Aersole
  • Silberjodit, Silberiodit
  • Trockeneis (gefrorenes Kohlendioxid)
  • Hygroskopische Materialien wie Salz,
  • Silanox
  • Cilicagel, Kieselgel
  • Kieselsäure 
  • Syloid65 (Subventionierte Brennstoffmischungen =
  • Chemtrail Chemikalien Mix) aus Patentunterlagen
  • Silberiodit-Kaliumiodit-Komplex
  • Lithium-Silberiodit-Komplex
  • Militär verteilt: Glasfaser-Spreu






Der Wissenschaftler David Keith, der die Geo-Ingenieure Ken Caldeira und Alan Robock in ihrer Arbeit unterstütztsagte auf einem Geo-Engineering - Seminar am 20. Februar 2010, dass sie beschlossen hätten, ihre stratosphärischen Aerosol-Modelle von Schwefel auf Aluminium umzustellen


Niemand auf der ganzen Welt , zumindest keiner der staatlichen Medien berichtete von diesem wichtigen Ereignis.





April 2016 

Aerosol Experiments Using Lithium and Psychoactive Drugs Over Oregon.



SKYGUARDS: Petition an das Europäische Parlament - 2013



Wir haben keine Zeit zu verlieren!




Klage gegen Geo-Engineering und Klimapolitik 


Der Rechtsweg ist vielleicht die einzige Hoffnung, Geo-Engineering-Programme zum Anhalten zu bewegen. Paris und andere Klimaabkommen schaffen Ziele von rechtlich international verbindlichen Vereinbarungen. Wenn sie erfolgreich sind, werden höchstwahrscheinlich SRM-Programme ohne ein ordentliches Gerichtsverfahren legalisiert. Wenn das geschieht, wird das unsere Fähigkeit Geoengineering zu verhindern und jede Form von rechtlichen Maßnahmen zu ergreifen stark behindern.


Ziel dieser Phase ist es, Mittel zu beschaffen um eine US- Klage vorzubereiten. Der Hauptanwalt Wille Tierarzt wählt qualifizierte Juristen aus dem ganzen Land aus, um sicher zu stellen, dass wir Top-Talente sichern, die wir für unser langfristiges Ziel einsetzen.



Die Fakten sind, dass seit einem Jahrzehnt am Himmel illegale Wetter -Änderungs-Programme stattfinden, unter Einsatz des Militärs im Rahmen der NATO, ohne Wissen oder Einwilligung der Bevölkerung..

EU-Konferenz und Petition über Wettermodifizierung und Geoengineering in Verbindung mit HAARP Technologien


Die Zeit ist gekommen. Anonymous wird nicht länger zusehen. Am 23. April werden wir weltweit gegen Chemtrails und Geoengineering friedlich demonstrieren.


Anonymous gegen Geoengineering 



Wir waren die allerletzten Zeit Zeugen eines normalen natürlichen blauen Himmels.





Heute ist der Himmel nicht mehr blau, sondern eher rot oder grau. 



Metapedia –

Die alternative Enzyklopädie




Die neue Enzyklopädie Chemtrails GeoEngineering HAARP






SRM - Geoengineering

Aluminium anstatt Schwefeloxid


Im Zuge der American Association for the Advancement of Science (AAAS) Conference 2010, San Diego am 20. Februar 2010, wurde vom kanadischen Geoingenieur David W. Keith (University of Calgary) vorgeschlagen, Aluminium anstatt Schwefeldioxid zu verwenden. Begründet wurde dieser Vorschlag mit 1) einem 4-fach größeren Strahlungsantrieb 2) einem ca. 16-fach geringeren Gerinnungsfaktor. Derselbe Albedoeffekt könnte so mit viel geringeren Mengen Aluminium, anstatt Schwefel, bewerkstelligt werden. [13]


Mehr Beweise als dieses Video braucht man wohl nicht. >>> Aerosol-Injektionen


Das "Geo-Engineering" Klima-Forschungsprogramm der USA wurde direkt dem Weißen Haus unterstellt,

bzw. dort dem White House Office of Science and Technology Policy (OSTP) zugewiesen. 



Diese Empfehlung lassen bereits das Konfliktpotential dieser GE-Forschung erahnen.






In den USA fällt Geo-Engineering unter Sicherheitspolitik und Verteidigungspolitik: 



Geo-Engineering als Sicherheitspolitische Maßnahme..


Ein Bericht der NASA merkt an, eine Katastrophensituation könnte die Entscheidung über SRM maßgeblich erleichtern, dann würden politische und ökonomische Einwände irrelevant sein. Die Abschirmung von Sonnenlicht durch SRM Maßnahmen wäre dann die letzte Möglichkeit, um einen katastrophalen Klimawandel abzuwenden.


maßgeblich erleichtern..????


Nach einer Katastrophensituation sind diese ohnehin illegalen geheimen militärischen SRM Programme wohl noch leichter durch die Parlamente zu bringen unter dem Vorwand der zivilen GE-Forschung. 




Der US-Geheimdienst CIA finanziert mit 630.000 $ für die Jahre   2013/14 

Geoengineering-Studien. Diese Studie wird u.a. auch von zwei anderen staatlichen Stellen NASA und NOAA finanziert. 




Um möglichst keine Spuren zu hinterlassen.. sind wirklich restlos alle Links im Netz entfernt worden. 






Es existieren viele Vorschläge zur technologischen Umsetzung des stratosphärischen Aerosol- Schildes.


Ein Patent aus dem Jahr 1991 behandelt das Einbringen von Aerosolen in die Stratosphäre

(Chang 1991).


Ein neueres Patent behandelt ein Verfahren, in dem Treibstoffzusätze in Verkehrsflugzeugen zum Ausbringen reflektierender Substanzen genutzt werden sollen (Hucko 2009).




Die von Microsoft finanzierte Firma Intellectual Ventures fördert die Entwick­lung eines „Stratoshield“ genannten Verfahrens, bei dem die Aerosolerzeugung in der Strato­sphäre über einen von einem Ballon getragenen Schlauch vom Erdboden aus bewirkt werden soll.


CE-Technologien wirken entweder symptomatisch oder ursächlich


Symptomatisch wirkend: 

Modifikation durch SRM-Geoengineering- Aerosole in der Stratosphäre


Ursächlich wirkend: 

Reduktion der CO2 Konzentration (CDR) 


Effekte verschiedener Wolkentypen


Dicke, tief hängende Wolken reflektieren das Sonnenlicht besonders gut und beeinflussen kaum die Energie, die von der Erde als langwellige Infrarotstrahlung abgegeben wird. Hohe Wolken sind dagegen kälter und meist dünner. Sie lassen daher mehr Sonnenlicht durch, dafür speichern sie anteilig mehr von der langwelligen, abgestrahlten Erdenergie. Um die Erde abzukühlen, sind daher tiefe Wolken das Ziel der Geoingenieure.



Zirruswolken wirken also generell erwärmend (Lee et al. 2009). Werden diese Wolken künstlich aufgelöst oder verändert, so wird sich in der Regel ein kühlender Effekt ergeben.


Nach einem Vorschlag von Mitchell et al.  (2009) könnte dies durch ein Einsäen von effizienten Eiskeimen bei der Wolkenbildung geschehen.



Eiskeime werden nur in sehr geringer Menge benötigt und könnten beispielsweise durch Verkehrs-Flugzeuge an geeigneten Orten ausgebracht werden. Die benötigten Materialmengen liegen dabei im Bereich von einigen kg pro Flug.



Die RQ-4 Global Hawk fliegt etwa in 20 Kilometer Höhe ohne Pilot.

1 - 1,5  Tonnen Nutzlast.


Instead of visualizing a jet full of people, a jet full of poison.



Das Militär hat bereits mehr Flugzeuge als für dieses Geo-Engineering-Szenario erforderlich wären, hergestellt. Da der Klimawandel eine wichtige Frage der nationalen Sicherheit ist [Schwartz und Randall, 2003], könnte das Militär für die Durchführung dieser Mission mit bestehenden Flugzeugen zu minimalen Zusatzkosten sein.




Die künstliche Klima-Kontrolle durch GE


Dies sind die Ausbringung von Aerosolpartikeln in der Stratosphäre, sowie die Erhöhung der Wolkenhelligkeit in der Troposphäre mithilfe von künstlichen Kondensationskeimen.




Brisanz von Climate Engineering  (DFG)


Climate-Engineering wird bei Klimakonferenzen (z.B. auf dem Weltklimagipfel in Doha) zunehmend diskutiert. Da die Maßnahmen für die angestrebten Klimaziele bisher nicht greifen, wird Climate Engineering als alternative Hilfe in Betracht gezogen.





Umweltaktivistin und Trägerin des alternativen Nobelpreises Dr. Rosalie Bertell, berichtet in Ihrem Buch »Kriegswaffe Planet Erde« über die Folgewirkungen und Auswirkungen diverser (Kriegs-) Waffen..


Bild anklicken
Bild anklicken


Dieses Buch ist ein Muss für jeden Bürger auf diesem Planeten.


..Indessen gehen die Militärs ja selbst gar nicht davon aus, dass es überhaupt einen Klimawandel gibt, wie wir aus Bertell´s Buch wissen (Hamilton in Bertell 2011).


Sondern das, was wir als Klimawandel bezeichnen, sind die Wirkungen der immer mehr zunehmenden


und Eingriffe ins Erdgeschehen mittels Geoengineering, insbesondere durch die HAARP-ähnlichen Anlagen, die es inzwischen in aller Welt gibt..


Bild anklicken
Bild anklicken



Why in the World are they spraying 


Durch die bahnbrechenden Filme von Michael J. Murphy "What in the World Are They Spraying?" und "Why in the world are the Spraying?" wurden Millionen Menschen die Zerstörung durch SRM-Geoengineering-Projekte vor Augen geführt. Seitdem bilden sich weltweit Bewegungen gegen dieses Verbrechen.



Die Facebook Gruppe Global-Skywatch hat weltweit inzwischen schon über 90.000 Mitglieder und es werden immer mehr Menschen, die die Wahrheit erkennen und die "gebetsmühlenartig" verbreiteten Lügengeschichten der Regierung und Behörden in Bezug zur GE-Forschung zu Recht völlig hinterfragen. 


Bild anklicken: Untertitel in deutscher Sprache
Bild anklicken: Untertitel in deutscher Sprache





SRM Programme - Ausbringung durch Flugzeuge 




Die Frage die bleibt, ist die Antwort auf  Stratosphärische Aerosol- Injektions- Programme und die tägliche Umweltzer-störung auf unserem Planeten“




Die Arbeit von Brovkin et al. (2009) zeigt für ein Emissionsszenario ohne Emissionskontrolle, dass der Einsatz von RM für mehrere 1000 Jahre fortgesetzt werden muss, je nachdem wie vollständig der Treibhausgas-induzierte Strahlungsantrieb kompensiert werden soll.




Falls sich die Befürchtung bewahrheitet, dass eine Unterbrechung von RM-Maßnahmen zu abruptem Klimawandel führt, kann sich durch den CE-Einsatz ein Lock-in-Effekt ergeben. Die hohen gesamtwirtschaftlichen Kosten dieses abrupten Klimawandels würden sozusagen eine Weiterführung der RM-Maßnahmen erzwingen.







Neben den Studien von CSEPP (1992) und Robock et al. (2009), ist insbesondere die aktuelle Studie von McClellan et al. (2010) hervorzuheben. Für die Ausbringung mit Flugsystemen wird angenommen, dass das Material mit einer Rate von 0,03 kg/m freigesetzt wird. Es werden Ausbringungshöhen von 13 bis 30 km untersucht.





Bestehende kleine Düsenjäger, wie der F-15C Eagle, sind in der Lage in der unteren Stratosphäre in den Tropen zu fliegen, während in der Arktis größere Flugzeuge wie die KC-135 Stratotanker oder KC-10 Extender in der Lage sind, die gewünschten Höhen zu erreichen.


SRM Protest-Märsche gleichzeitig in circa 150 Städten - weltweit.


Geoengineering-Forschung als Plan B für eine weltweit verfehlte Klimapolik. 


Bild anklicken:
Bild anklicken:


Staaten führen illegale Wetter-Änderungs-Techniken als globales Experiment gegen den Klimawandel durch, geregelt über die UN, ausgeführt durch die NATO, mit militärischen Flugzeugen werden jährlich 10-20 Millionen Tonnen hoch giftiger Substanzen in den Himmel gesprüht..


Giftige Substanzen, wie Aluminium, Barium, Strontium, die unsere Böden verseuchen und die auch auf Dauer den ph-Wert des Bodens deutlich verändern würden. Es sind giftige Substanzen, wie Schwefel, welches die Ozonschicht systematisch zerstören würde. 






Weltweite  Protestmärsche gegen globale Geoengineering Experimente finden am 25. April 2015 in all diesen Städten gleichzeitig statt:




AUSTRALIEN - (Adelaide)

AUSTRALIEN - (Albury-Wodonga)

AUSTRALIEN - (Bendigo)

AUSTRALIEN - (Brisbane)

AUSTRALIEN - (Byron Bay)


AUSTRALIEN - (Canberra)


AUSTRALIEN - (Gold Coast)


AUSTRALIEN - (Melbourne)

AUSTRALIEN - (Newcastle)

AUSTRALIEN - (New South Wales, Byron Bay)


AUSTRALIEN - (Port Macquarie)

AUSTRALIEN - (South Coast NSW)

AUSTRALIEN - (South East Qeensland)

AUSTRALIEN - (Sunshine Coast)


AUSTRALIEN - (Tasmania)

BELGIEN - (Brüssel)

BELGIEN - (Brüssel Group)

BRASILIEN - (Curitiba)

BRASILIEN - (Porto Allegre)


Kanada - Alberta - (Calgary)

Kanada - Alberta - (Edmonton)

Kanada - Alberta - (Fort Saskatchewan)

Kanada - British Columbia - (Vancouver Group)

Kanada - British Columbia - (Victoria)

Kanada - Manitobak - (Winnipeg)

Kanada – Neufundland

Kanada - Ontario - (Barrie)

Kanada - Ontario - (Cambridge)

Kanada - Ontario - (Hamilton)

Kanada - Ontario - (London)

Kanada - Ontario - (Toronto)

Kanada - Ontario  - (Ottawa)

Kanada - Ontario - (Windsor)

Kanada - Québec - (Montreal)

KOLUMBIEN - (Medellin)


KROATIEN - (Zagreb)

DÄNEMARK - (Aalborg)

DÄNEMARK - (Kopenhagen)

DÄNEMARK - (Odense)

ESTLAND - (Tallinn)

Ägypten (Alexandria)

FINNLAND - (Helsinki)




DEUTSCHLAND - (Düsseldorf)




Ungarn (Budapest)

IRLAND - (Cork City)

IRLAND - (Galway)

ITALIEN - (Milano)

Italien - Sardinien - (Cagliari)

MAROKKO - (Rabat)


NIEDERLANDE - (Groningen)

NEUSEELAND - (Auckland)

NEUSEELAND - (Christchurch)

NEUSEELAND - (Hamilton)


NEUSEELAND - (New Plymouth)



NEUSEELAND - (Wellington)

NEUSEELAND - (Whangerei)




PORTUGAL - (Lissabon)

SERBIEN - (Glavni Gradovi)



SPANIEN - (Barcelona)

SPANIEN - (La Coruna)

SPANIEN - (Ibiza)

SPANIEN - (Murcia)

SPANIEN - (San Juan - Alicante)

SCHWEDEN - (Gothenburg)

SCHWEDEN - (Stockholm)

SCHWEIZ - (Bern)

SCHWEIZ - (Genf)

SCHWEIZ - (Zürich)

UK - ENGLAND - (London)

UK - ISLE OF MAN - (Douglas)

UK - Lancashir - (Burnley)

UK - Scotland - (Glasgow)

UK - Cornwall - (Truro)

USA - Alaska - (Anchorage)

USA - Arizona - (Flagstaff)

USA - Arizona - (Tucson)

USA - Arkansas - (Hot Springs)

USA - Kalifornien - (Hemet)

USA - CALIFORINA - (Los Angeles)

USA - Kalifornien - (Redding)

USA - Kalifornien - (Sacramento)

USA - Kalifornien - (San Diego)

USA - Kalifornien - (Santa Cruz)

USA - Kalifornien - (San Francisco)

USA - Kalifornien - Orange County - (Newport Beach)

USA - Colorado - (Denver)

USA - Connecticut - (New Haven)

USA - Florida - (Boca Raton)

USA - Florida - (Cocoa Beach)

USA - Florida - (Miami)

USA - Florida - (Tampa)

USA - Georgia - (Gainesville)

USA - Illinois - (Chicago)

USA - Hawaii - (Maui)

USA - Iowa - (Davenport)

USA - Kentucky - (Louisville)

USA - LOUISIANA - (New Orleans)

USA - Maine - (Auburn)

USA - Maryland - (Easton)

USA - Massachusetts - (Worcester)

USA - Minnesota - (St. Paul)

USA - Missouri - (St. Louis)

USA - Montana - (Missoula)

USA - NEVADA - (Black Rock City)

USA - NEVADA - (Las Vegas)

USA - NEVADA - (Reno)

USA - New Jersey - (Red Bank)

USA - New Mexico (Northern)

USA - NEW YORK - (Ithaca)

USA - NEW YORK - (Long Island)

USA - NEW YORK - (New York City)

USA - NORTH CAROLINA - (Asheville)

USA - NORTH CAROLINA - (Charlotte)

USA - NORTH CAROLINA - (Greensboro)

USA - Oregon - (Ashland)

USA - Oregon - (Portland)

USA - Pennsylvania - (Harrisburg)

USA - Pennsylvania - (Pittsburgh)

USA - Pennsylvania - (West Chester)

USA - Pennsylvania - (Wilkes - Barre)

USA - SOUTH CAROLINA - (Charleston)

USA - Tennessee - (Memphis)

USA - Texas - (Austin)

USA - Texas - (Dallas / Metroplex)

USA - Texas - (Houston)

USA - Texas - (San Antonio)

USA - Vermont - (Burlington)

USA - Virginia - (Richmond)

USA - Virginia - (Virginia Beach)

USA - WASHINGTON - (Seattle)

USA - Wisconsin - (Milwaukee)


Bild anklickem: Holger Strom Webseite
Bild anklickem: Holger Strom Webseite


Der Film zeigt eindrucksvolle Beispiele, beginnend beim Einsatz der Atombomben mit ihren schrecklichen Auswirkungen bis hin zu den gesundheitszerstörenden, ja tödlichen Hinterlassenschaften der Atomenergienutzung durch die Energiewirtschaft. Eine besondere Stärke des Films liegt in den Aussagen zahlreicher, unabhängiger Fachleute. Sie erläutern mit ihrem in Jahrzehnten eigener Forschung und Erfahrung gesammelten Wissen Sachverhalte und Zusammenhänge, welche die Befürworter und Nutznießer der Atomtechnologie in Politik, Wirtschaft und Militärwesen gerne im Verborgenen halten wollen.


Prof. Dr. med. Dr. h. c. Edmund Lengfelder



Nicht viel anders gehen Politiker/ Abgeordnete des Deutschen Bundestages mit der hoch toxischen riskanten SRM Geoengineering-Forschung um, um diese riskante Forschung durch die Parlamente zu bekommen.


Es wird mit gefährlichen Halbwissen und Halbwahrheiten gearbeitet. Sie werden Risiken vertuschen, verdrehen und diese Experimente als das einzig Richtige gegen den drohenden Klimawandel verkaufen. Chemtrails sind Stratosphärische Aerosol Injektionen, die  illegal auf globaler Ebene stattfinden, ohne jeglichen Parlament-Beschluss der beteiligten Regierungen.


Geoengineering-Projekte einmal begonnen, sollen für Jahrtausende fortgeführt werden - ohne Unterbrechung (auch bei finanziellen Engpässen oder sonstigen Unruhen) um nicht einen Umkehreffekt  auszulösen.


Das erzählt Ihnen die Regierung natürlich nicht, um diese illegale hochgefährliche RM Forschung nur ansatzweise durch die Parlamente zu bringen.


Spätestens seit dem Atommüll-Skandal mit dem Forschungs-Projekt ASSE wissen wir Bürger/Innen, wie Politik und Wissenschaft mit Forschungs-Risiken umgehen.. Diese Gefahren und Risiken werden dann den Bürgern einfach verschwiegen. 



Am 30. September 2012 ist eine neue Internetplattform zu Climate Engineering online gegangen  


Die Plattform enthält alle neuen Infos -Publikationen, Veranstaltungen etc. zu Climate-Engineering.





Gezielte Eingriffe in das Klima?

Eine Bestandsaufnahme der Debatte zu Climate Engineering

Kieler Earth Institute



Climate Engineering:

Ethische Aspekte

Karlsruher Institut für Technologie



Climate Engineering:

Chancen und Risiken einer Beeinflussung der Erderwärmung. Naturwissenschaftliche und technische Aspekte

Leibniz-Institut für Troposphärenforschung, Leipzig


Climate Engineering:

Wirtschaftliche Aspekte 

Kiel Earth Institute



Climate Engineering:

Risikowahrnehmung, gesellschaftliche Risikodiskurse und Optionen der Öffentlichkeitsbeteiligung

Dialogik Stuttgart



Climate Engineering:

Instrumente und Institutionen des internationalen Rechts

Universität Trier



Climate Engineering:

Internationale Beziehungen und politische Regulierung

Wissenschaftszentrum Berlin für Sozialforschung




Illegale Atmosphären-Experimente finden in Deutschland  seit  2012 „täglich“ am Himmel statt.


Chemtrails  -  Verschwörung am Himmel ? Wettermanipulation unter den Augen der Öffentlichkeit


Auszug aus dem Buch: 


Ich behaupte, dass in etwa 2 bis 3 mal pro Woche, ungefähr ein halbes Dutzend  von frühmorgens bis spätabends in einer Art und Weise Wien überfliegen, die logisch nicht erklärbar ist. Diese Maschinen führen über dem Stadtgebiet manchmal auffällige Steig- und Sinkflüge durch , sie fliegen Bögen und sie drehen abrupt ab. Und sie hinterlassen überall ihre dauerhaft beständigen Kondensstreifen, welche auch ich Chemtrails nenne. Sie verschleiern an manchen Tagen ganz Wien und rundherum am Horizont ist strahlend blauer ...
Hier in diesem Buch  aus dem Jahr 2005 werden die anfänglichen stratosphärischen SRM-Experimente am Himmel beschrieben... inzwischen fliegen die Chemie-Bomber ja 24 h Nonstop, rund um die Uhr.





Weather Modification Patente


Umfangreiche Liste der Patente











Von Pat Mooney - Er ist Gründer und Geschäftsführer der kanadischen Umweltschutzorganisation ETC Group in Ottawa.


Im Jahr 1975 tat sich der US-Geheimdienst CIA mit Newsweek zusammen und warnte vor globaler Abkühlung. Im selben Jahr wiesen britische Wissenschaftler die Existenz eines Lochs in der Ozonschicht über der Antarktis nach und die UN-Vollversammlung befasste sich mit identischen Anträgen der Sowjetunion und der USA für ein Verbot von Klimamanipulationen, die militärischen Zwecken dienen. Dreißig Jahre später redeten alle - auch der US-Präsident über globale Erwärmung. 


Wissenschaftler warnten, der Temperaturanstieg über dem arktischen Eis  und im sibirischen Permafrost könnte in die Klimakatastrophe führen, und der US-Senat erklärte sich bereit , eine Vorlage zu prüfen, mit der Eingriffe in das Klima erlaubt werden sollten. 


Geo-Engineering ist heute Realität. Seit dem Debakel von Kopenhagen bemüht sich die große Politik zusammen mit ein paar Milliardären verstärkt darum, großtechnische Szenarien zu prüfen und die entsprechenden Experimente durchzuführen.


Seit Anfang 2009 überbieten sich die Medien mit Geschichten über Geoengineering als "Plan B". Wissenschaftliche Institute und Nobelpreisträger legen Berichte und Anträge vor, um die Politik zur Finanzierung von Feldversuchen zu bewegen. Im britischem Parlament wie im US-Kongress haben die Anhörungen schon begonnen. Anfang 2010 berichteten Journalisten, Bill Gates investiere privat in Geoengineering-Forschung und werde bei Geoengineering-Patenten zur Senkung der Meerestemperatur und zur Steuerung von Hurrikanen sogar als Miterfinder genannt. Unterdesssen hat Sir Richard Branson - Gründer und Besitzer der Fluglinie Virgin Air - verkündet, er habe eine Kommandozentrale für den Klimakrieg eingerichtet und sei für alle klimatechnischen Optionen offen. Zuvor hatte er 25 Millionen Dollar für eine Technik ausgesetzt, mit der sich die Stratosphäre reinigen lässt. 


Einige der reichsten Männer der Welt (z.B. Richard Branson und Bill Gates ) und die mächtigsten Konzerne (z.B. Shell , Boeing ) werden immer beteiligt.


Geoengineering Karte - ETC Group


ETC Group veröffentlicht eine Weltkarte über Geoengineering-Experimente, die groß angelegte Manipulation des Klimas unserer Erde.  Zwar gibt es keine vollständige Aufzeichnung von Wetter und Klima-Projekten in Dutzenden von Ländern, diese Karte ist aber der erste Versuch, um den expandierenden Umfang der Forschungs-Experimente zu dokumentieren. 


Fast 300 Geo-Engineering-Projekte / Experimente sind auf der Karte vertreten, die zu den verschiedenen Arten von Klima-Änderungs-Technologien gehören.

Einfach anklicken und vergrößern..
Einfach anklicken und vergrößern..


Aus der Sicht der reichen Länder (und ihrer Unternehmen) erscheint Geoengineering einfach perfekt. Es ist machbar. Es ist (relativ) billig. Und es erlaubt der Industrie, den Umbau unserer Wirtschaft und Produktionsweise für überflüssig zu erklären.


Das wichtigste aber ist: Geoengineering braucht keinerlei internationale Übereinkunft. Länder, Unternehmen, ja sogar superreiche Geo-Piraten können es auf eigene Faust durchziehen. Eine bescheidene >Koalition der Willigen< genügt vollauf, und eine Handvoll Akteure kann den Planeten nach Belieben umbauen.


Damit wir es nicht vergessen:


Seit 1945  führten die USA, die UdSSR, England, Frankreich und später auch China mehr als 2000 Atomtests durch – über und unter der Erde und ohne Rücksicht auf die zu erwartenden Auswirkungen auf Gesundheit und Umwelt weltweit. Niemand wurde um Erlaubnis gefragt. Wenn das Weltklima zu kippen droht, werden sie da wirklich vor einseitigen Entscheidungen zurückschrecken? 




Warum ist Geo-Engineering nicht akzeptabel..?


SRM Geoengineering kann nicht im Labor getestet werden: Es ist keine experimentelle Labor-Phase möglich, um einen spürbaren Einfluss auf das Klima zu haben. Geo-Engineering muss massiv eingesetzt werden.


Experimente oder Feldversuche entsprechen tatsächlich den Einsatz in der realen Welt, da kleine Tests nicht die Daten auf Klimaeffekte liefern.


Auswirkungen für die Menschen und die biologische Vielfalt würden wahrscheinlich sofort massiv und möglicherweise irreversibel sein.





Hände weg von Mutter Erde (HOME) ist eine weltweite Kampagne, um unserem kostbaren Planeten Erde, gegen die Bedrohung durch Geo-Engineering-Experimente zu verteidigen. Gehen Sie mit uns, um eine klare Botschaft an die Geo-Ingenieure und die Regierungen weltweit zu senden, dass unsere Erde kein ein Labor ist.



Liste der (SRM) Geoengineering-Forschung

Hier anklicken:
Hier anklicken: research funding 10-9-13.xls


Weltweite Liste der Geoengineering-Forschung SRM Forschungs Länder: 


Großbritannien, Vereinigte Staaten Amerika, Deutschland, Frankreich, Norwegen, Finnland, Österreich und Japan.



In "NEXT BANG!" beschreibt Pat Money neue Risikotechnologien, die heute von Wissenschaftlern, Politikern und mächtigen Finanziers aktiv für den kommerziellen Einsatz vorbereitet werden:


Geo-Engineering, Nanotechnologie, oder die künstliche >Verbesserung< des menschlichen Körpers.


"Die  Brisanz des Buches liegt darin, dass es zeigt, wie die Technologien, die unsere Zukunft bestimmen könnten, heute zum großflächigen Einsatz vorbereitet werden – und das weitgehend unbemerkt von der Öffentlichkeit. Atomkraft, toxische Chemikalien oder genmanipulierte Organismen konnten deshalb nicht durch demokratische Entscheidungen verhindert werden, weil hinter ihnen bereits eine zu große ökonomische und politische Macht stand, als ihre Risiken vielen Menschen erst bewusst wurden.


Deshalb dürfen wir die Diskussion über Geoengineering, Nanotechnologie, synthetische Biologie  und die anderen neuen Risikotechnologien nicht länger den selbsternannten Experten überlassen. Die Entscheidungen über ihren künftigen Einsatz fallen jetzt - es ist eine Frage der Demokratie, dass wir alle dabei mitreden."


Ole von UexküllDirektor der Right Livelihood Award Foundation, die den Alternativen Nobelpreis vergibt



Vanishing of the Bees - No Bees, No Food !


Verschwinden der Bienen  - Keine Bienen, kein Essen !






Solar Radiation Management = SRM

Es ist zu beachten, dass SRM Maßnahmen zwar auf kurzer Zeitskala wirksam werden können, die Dauer ihres Einsatzes aber an der Lebensdauer des CO-2 gebunden ist, welches mehrere Tausend Jahre beträgt.


CDR- Maßnahmen hingegen müssten über einen sehr langen Zeitraum (viele Jahrzehnte) aufgebaut werden, ihr Einsatz könnte allerdings beendet werden, sobald die CO2 Konzentration wieder auf ein akzeptables Niveau gesenkt ist. Entsprechende Anstrengungen vorausgesetzt, könnte dies bereits nach einigen Hundert Jahren erreicht sein.


CDR Maßnahmen: sind relativ teuer und arbeiten viel zu langsam. Bis sie wirken würden, vergehen viele Jahrzehnte


Solar Radiation Management SRM Maßnahmen: billig.. und schnell..



Quelle: Institut für Technikfolgenabschätzung






Solar Radiation Management = SRM


Ironie der Geoengineering Forschung:


Ein früherer SRM Abbruch hätte einen abrupten sehr heftigen Klimawandel zur Folge, den wir in dieser Schnelligkeit und heftigen Form nie ohne diese SRM Maßnahmen gehabt hätten. 


Das, was Regierungen mit den globalen GEO-ENGINEERING-INTERVENTIONEN verhindern wollten, genau das wären dann die globalen Folgeschäden bei der frühzeitigen Beendigung der SRM Forschungs-Interventionen.


Wenn sie diese hoch giftigen SAI - Programme  aus wichtigen Gründen vorher abbrechen müssten, droht uns ein abrupter Klimawandel, der ohne diese GE-Programme nie dagewesen wäre. 


Das bezeichne ich doch mal  als wahre  reale Satire..