Geoengineering: Whiter skies?

 

  1. Ben Kravitz - Douglas G. MacMartin -Ken Caldeira - (2012)

 

http://onlinelibrary.wiley.com/doi/10.1029/2012GL051652/epdf

 

 

 

Hier wird genau beschrieben, wie man Geoengineering-Experimente (Solar Radiation Management) am Himmel erkennt. Von wegen.. das sind ganz normale Kondensstreifen, die den Himmel weiß machen.

 

Geoengineering Experimente lassen den Himmel weiß oder grau erscheinen.

 

Die Luftfeuchtigkeit in der Atmosphäre reicht in den allermeisten Fällen gar nicht aus, um dass sich persistente Kondensstreifen bilden könnten und schon gar nicht, dass sie sich auch noch verbreitern können, wie wir es nahezu täglich am Himmel sehen können. Dann müsste wohl immer 120% Luftfeuchte in den Atmosphären Schichten zwischen 8 und 15 Km Höhe vorherrschen. Ich glaube nicht, dass dies je einer beweisen könnte. 

 

 

 

Geoengineering: Whiter skies?

 

Ben Kravitz,1 Douglas G. MacMartin,2 and Ken Caldeira1

Received 9 March 2012; revised 1 May 2012; accepted 2 May 2012; published 1 June 2012.

 

[1] One proposed side effect of geoengineering with stratospheric sulfate aerosols is sky whitening during the day and afterglows near sunset, as is seen after large volcanic eruptions. Sulfate aerosols in the stratosphere would increase diffuse light received at the surface, but with a non-uniform spectral distribution. We use a radiative transfer model to calculate spectral irradiance for idealized size distributions of sulfate aerosols. A 2% reduction in total irradiance, approximately enough to offset anthropogenic warming for a doubling of CO2 concentrations, brightens the sky (increase in diffuse light) by 3 to 5 times, depending on the aerosol size distribution. The relative increase is less when optically thin cirrus clouds are included in our simulations. Particles with small radii have little influence on the shape of the spectra. Particles of radius 0.5 mm preferentially increase diffuse irradiance in red wavelengths, whereas large particles (0.9 mm) preferentially increase diffuse irradiance in blue wavelengths. Spectra show little change in dominant wavelength, indicating little change in sky hue, but all particle size distributions produce an increase in white light relative to clear sky conditions. Diffuse sky spectra in our simulations of geoengineering with stratospheric aerosols are similar to those of average conditions in urban areas today.

 

Citation: Kravitz, B., D. G. MacMartin, and K. Caldeira (2012), Geoengineering: Whiter skies?, Geophys. Res. Lett., 39, L11801, doi:10.1029/2012GL051652.

 

 

1. Introduction

 

[2] Robock [2008, 2011] argued that geoengineering with sulfate aerosols would cause whitening of the sky, as was seen after the eruption of Mount Pinatubo [Robock, 2000]. Geoengineering with stratospheric sulfate aerosols to offset anthropogenic warming [Crutzen, 2006] would result in direct irradiance being decreased by much more than total irradiance, which is compensated by an increase in diffuse irradiance. When the ratio of particle size to scattered wavelength is small, such as for air molecules scattering visible wavelengths (380–780 nm), scattering is in the Rayleigh regime, in which short wavelengths (blues) are scattered more efficiently than long wavelengths (reds), giving the sky its blue hue. When particles are similar in size to the scattered wavelength, as is the case for stratospheric sulfate aerosols from large volcanic eruptions, scattering is more uniform across the visible spectrum. Thus, in the presence of an aerosol layer, diffuse irradiance at longer wavelengths (reds) increases more than the increase in shorter wavelengths (blues). As scattering increases, the portion of diffuse light also increases, resulting in a brighter sky as seen from the ground, because sulfate aerosols preferentially forward scatter more radiation than they back scatter.

 

[3] In this paper, we use the term brightness of sky to refer to diffuse irradiance integrated over the visible band from an observer looking upward, and we are specifically excluding direct irradiance of the sun in reporting this quantity. We refer to white light as having a uniform irradiance spectrum, so a whiter sky would have a higher portion of irradiance in longer wavelengths than a blue sky. All references to solar irradiance reduction are in irradiance integrated over the visible band as measured at the surface.

 

 

1 Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA.

2 Department of Control and Dynamical Systems, California Institute of Technology, Pasadena, California, USA.

 

Corresponding author: B. Kravitz, Department of Global Ecology, Carnegie Institution for Science, 260 Panama St., Stanford, CA 94305, USA. (bkravitz@carnegie.stanford.edu)

 

 

 

 

2. Simulations

 

[4] To determine the degree to which the sky will whiten and brighten as a result of idealized distributions of stratospheric sulfate aerosols, we use the radiative transfer model libRadtran [Mayer and Kylling, 2005] (see Text S1 in the auxiliary material) to simulate spectral irradiance.1 Because the scattering properties of sulfate aerosols are strongly dependent upon the size distribution, we compare the results for lognormal distributions with different median radii and standard deviations, the latter of which is a measure of distribution width.We investigate atmospheric loadings of aerosols that correspond to up to a 2% reduction in irradiance received at the surface, which is roughly the amount needed to offset the warming from a doubling of CO2 concentrations from the preindustrial era [Govindasamy and Caldeira, 2000].

 

 

 

3. Spectral Irradiance and Mie Calculations

 

[5] Figure 1 shows perturbations to the visible light spectrum from our simulations of stratospheric sulfate aerosols (unimodal lognormal, median radius rg = 0.5 mm, s = 0.1) with an aerosol optical depth that reduces total integrated visible band surface irradiance by 2%. Relative to a clear sky case (no clouds or aerosols), a 2% reduction in total irradiance with this aerosol size distribution reduces daytime direct irradiance by 22% and increases diffuse irradiance by over four times. The increase in diffuse irradiance is more prominent in red wavelengths than blue wavelengths.

 

[6] For our daytime simulations, we use a solar zenith angle of 0. We examined the impacts of changing solar zenith angle on the aerosol effects on irradiance spectra. Except for large solar zenith angles (i.e., near sunrise or sunset), increasing the angle reduces irradiance by a factor

 

 

 

 

 

that is nearly constant at all wavelengths, so daytime sky hue changes from stratospheric aerosols are relatively insensitive to solar zenith angle (not shown). At large solar zenith angles, the sun appears redder than in daytime, as the amount of atmosphere through which light must travel to reach an observer increases. This increases the amount of Rayleigh scattering by air molecules, which preferentially scatters shorter wavelengths, and consequently longer wavelengths (reds and oranges) reach the observer as a higher portion of light [Corfidi, 1996]. Therefore, direct solar radiation at sunset appears to be redder, whereas the diffuse sky retains its blue hue (Figure 1, bottom). However, in the presence of a stratospheric aerosol layer, solar radiation is scattered by the aerosol layer, resulting in an afterglow that is characteristic of volcanic sunsets [Corfidi, 1996]. Indeed, our simulations for the eruption of Pinatubo (described in Section 3 of Text S1) show an increase in diffuse light by      approximately a factor of two at long wavelengths; direct irradiance decreases by up to 75% at long wavelengths. Similar to the eruption of Pinatubo, sulfate aerosols under the specifications we simulated (rg = 0.5 mm, s = 0.1) would cause sunsets similar in appearance to volcanic sunsets.

 

[7] Changes in irradiance are dependent upon the size distribution of the particles, both in terms of median radius and distribution width. Figure 2 shows spectral irradiance and asymmetry parameters for a range of median radii and distribution standard deviations. The asymmetry parameter g indicates the average direction of light scattering. Pure backscattering corresponds to g = 1, pure forward scattering to g = 1, and isotropic scattering to g = 0. Note that g varies with wavelength in ways that depend on the particle size distribution. All cases show at least a factor of 2 increase in diffuse irradiance over the clear sky case, indicating a sky brightening.

 

[8] The distribution with median radius rg = 0.1 mm shows an asymmetry parameter that is almost uniform in wavelength, meaning the same approximate percentage of diffuse light will be forward scattered at all wavelengths. Because the solar spectrum has more irradiance in shorter wavelengths than longer ones, the diffuse spectrum resulting from stratospheric sulfate aerosols with this particular size distribution has a larger increase in irradiance in blue wavelengths than red wavelengths. The results for rg = 0.1 and 0.3 mm are similar. For rg = 0.5 mm, the asymmetry parameter favors forward scattering of longer wavelengths, resulting in a flattening of the diffuse spectrum. This whitens the sky, where white light is defined as having uniform irradiance for all visible wavelengths. rg = 0.7 mm has an asymmetry parameter that favors forward scattering of both short and long visible wavelengths, and rg = 0.9 mm favors forward scattering of short wavelengths. The latter results in the smallest change in the overall shape of the diffuse spectrum.

 

[9] The asymmetry parameter depends more strongly on wavelength for narrower size distributions. For a distribution median radius of rg = 0.5 mm, as the distribution width increases, the asymmetry parameter becomes more uniform, slightly favoring forward scattering of shorter wavelengths. The asymmetry parameter also increases (more forward scattering) for all wavelengths when s changes from 0.5 to 1.0, which skews diffuse irradiance toward shorter wavelengths.

 

[10] Table 1 shows increases in diffuse sky brightness (diffuse irradiance integrated over the visible band) for all simulations we performed. Larger reductions in solar irradiance are achieved by larger optical depths (Table 2 in Text S1), so large reductions have more sky brightening. Increasing s from 0.1 to 0.25 decreases brightness for small distribution median radii, and increasing s from 0.25 to 0.5 or 1.0 increases brightness. This can be explained by integrating under the irradiance curves in Figure 2 (top right). For large median radii, the increase in brightness is monotonic with s.

 

 

 

[11] The dependence of brightness on the median radius of the distribution strongly depends upon the distribution width (Table 1). For narrow distributions (s = 0.1), the radius that gives the largest increase in brightness is rg = 0.3 mm, and the smallest increase is for rg = 0.8 mm. For s ≥ 0.25, the largest brightness increase is for the smallest radius of rg = 0.1 mm, and brightness increases diminish almost monotonically with increasing radius.

 

[12] We also performed simulations of thin cirrus clouds to determine the effects of these clouds on our simulations (see Section 4 of Text S1). A cloud fraction of 20% [Mace et al., 2001] diminishes brightness increases by approximately 40% for all size distributions (Table 3 in Text S1). Effects of the geoengineering case rg = 0.5 mm, s = 0.1 show nearly negligible changes in total irradiance, up to a 5% decrease in direct irradiance, and over a 20% increase in diffuse irradiance (Figure 1 in Text S1). The enhancement of diffuse light by cirrus clouds is by an approximately constant factor across all wavelengths, whereas stratospheric sulfate aerosols preferentially enhance longer wavelengths over shorter ones.

 

 

4. Perceived Color

 

[13] Determining whether the sky would be whiter under geoengineering is not straightforward. The main difficulty in determining this effect is that color is not an intrinsic property of light; rather, it is perceived and interpreted. Therefore, the relevance of showing color swatches of sky color in red-green-blue color space (or another equivalent) is not immediately apparent, as it is difficult to interpret these color swatches out of their normal perceptual context. Sky color temperature varies with sunlight and meteorological conditions, and many different color matching algorithms have been proposed, all of which can radically affect color perception. (See Section 7 of Text S1 for a discussion and examples.) Furthermore, there is no guarantee the colors will be displayed with fidelity, as color appearance depends on the means of viewing, e.g., the computer monitor and printer.

 

[14] Despite these difficulties, one can obtain some measure of sky color change. A metameric match is the monochromatic wavelength which will elicit the same response in the retinas as a specified irradiance spectrum. Using an average profile of cone sensitivities [Stockman and Sharpe, 2000] and matching functions [Smith, 2005] (see Section 6 of Text S1), we determined the metameric matches to spectra produced by our simulations. Additionally, the perceived sky can be approximated as a mixture of this monochromatic light with white light (light with a uniform irradiance 

spectrum).

 

 

 

[15] Figure 3 illustrates these two concepts for our simuations, assuming a 2% reduction in visible integrated solar irradiance and a narrow size distribution to highlight the effects of radius. The black lines in Figure 3 show the case for a clear sky (no aerosols). Small radii show the largest wavelength departure, reaching a maximum difference of 8 nm. rg = 0.8 mm shows the smallest departure by only 1 nm. All of the wavelengths in Figure 3 fall distinctly within the blue range [Boynton et al., 1964], so none of these departures is indicative of a radical change in sky color. However, all simulations pictured in Figure 3 show a whitening of the sky. The white to monochromatic light ratio increases by over a factor of 2 for all cases, and by a full order of magnitude for rg = 0.5 and 0.6 mm. This figure shows that aerosols in the middle of the range we considered would likely cause the largest changes in perceived color. For reference, we have also included a calculation for the 1991 eruption of Mount Pinatubo (red asterisks, see Section 3 of Text S1 for specifications of the simulation). Nearly all of our geoengineering simulations that reduce total irradiance by 2% show more sky whitening than was seen in March after the eruption of Pinatubo.

 

 

 

5. Comparisons: Urban Pollution

 

[16] To provide context for our results, we compare the spectra from our stratospheric sulfate aerosol geoengineering simulations with spectra characteristic of a range of urban air pollution conditions. Since pollution in urban areas varies on a daily basis, depending upon meteorological conditions, as well as the particular urban area, we compared our results to an average of aerosol measurements (see Table 1 in Text S1) taken in three urban areas (Greenbelt, MD; Paris, France; and Mexico City, Mexico), including a low aerosol case (relatively clear day), a high aerosol case (relatively polluted day), and an average/typical case [Dubovik et al., 2002] (see Section 5 of Text S1). Stratospheric aerosols with a size

distribution specified by rg = 0.5 mm and s = 1.0 and with a reduction of visible integrated solar irradiance by 1.5% have a similar spectrum to an average pollution day in the urban areas considered (Figure 4). A day with heavy pollution would correspond to a level of stratospheric sulfate aerosols that would produce a solar irradiance reduction far exceeding 2%. For reference, we have also included a simulation of the 1991 eruption of Mount Pinatubo (specifications in Section 3 of Text S1).

 

[17] For stratospheric sulfate aerosol distributions with rg = 0.5 mm and s = 1.0, an optical depth of 0.15 results in a solar irradiance reduction of 1%, and reduction in irradiance scales linearly with optical depth (Table 2 in Text S1). Therefore, assuming the average urban pollution case has an optical depth of t550 = 0.21, an additional solar reduction of 1% from stratospheric aerosols would, on average, cause the sky over formerly pristine areas to look similar to the sky over urban areas. The variation of optical depth in urban areas that already occurs is much larger than the added optical depth from our simulations.

 

 

 

6. Conclusions

 

 

[18] According to our simulations, stratospheric geoengineering with sulfate aerosols at the levels considered here likely would not cause profound changes in sky hue but would whiten the sky, potentially exceeding the amount of whitening observed after the 1991 eruption of Mount Pinatubo. These levels of geoengineering would also cause sunsets similar to those seen after large volcanic eruptions.

 

 

 

 

 

[19] The results of this study have multiple implications, although some are not easily quantified. One of the motivations for Robock [2008] is the concern over potential psychological implications. We have provided the physics-based predictions of sky changes from stratospheric sulfate geoengineering, and our results can provide a basis for psychological research. Additionally, public perception of the effects discussed in this paper could be investigated, as the whitening of skies could contribute to opposition to geoengineering.

 

[20] One of the more quantifiable impacts is a potential enhancement of the land carbon sink, as was seen after the 1991 eruption of Mount Pinatubo [Mercado et al., 2009]. Diffuse light more easily penetrates canopies, and it can also more easily strike more leaf surfaces, which can increase plant photosynthetic activity. However, the degree to which this effect could occur depends on the size distribution of the sulfate aerosols, as our results show.

 

[21] Additionally, solar power generating capacity could be affected by geoengineering [Murphy, 2009]. Generation of solar power by concentrating solar thermal plants is largely proportional to the amount of direct sunlight received. Therefore, the reductions in direct irradiance that our results show could reduce the effectiveness of this particular method of obtaining low-carbon-emission energy, which could lead to increased use of other energy sources, including fossil fuel combustion.

 

[22] Although we do not discuss photochemical impacts, Tilmes et al. [2008] have shown that sulfate aerosol geoengineering has the potential to decrease stratospheric ozone concentrations. Possible impacts of sulfate geoengineering on chemistry warrant further study.

 

[23] Different means of generating the aerosol particles would produce different aerosol size distributions, affecting development of engineering approaches to geoengineering. If the aerosols are formed from photochemical conversion of SO2 into sulfate aerosols, the expected particle size distribution width is large [Heckendorn et al., 2009], meaning the median particle radius has diminished importance in determining the amount of sky whitening, but sky brightening will be larger than for narrower distributions. However, if a monodisperse size distribution of aerosols is created, which could result from direct condensation of gaseous sulfuric acid [Pierce et al., 2010], median radius becomes important in determining sky whiteness. Our results also have implications for geoengineering with engineered particles, in that the sky color and brightness will depend very strongly on the asymmetry parameter of the particle.

 

 

[24] To achieve a minimal amount of sky whitening under geoengineering with stratospheric sulfate aerosols, there are three options: (1) choose a larger particle size so the particles preferentially forward scatter more in blue wavelengths than red wavelengths (the shape of g will be similar to that

of r = 0.9 mm in Figure 2); (2) Use particles that have less forward scattering in all wavelengths (smaller value of g); or (3) Limit the amount of sulfate geoengineering or avoid such geoengineering entirely. The first option is problematic, as large aerosols have a higher fall speed than smaller aerosols, meaning a higher rate of injection is needed for these large aerosols than for smaller ones to achieve the same amount of atmospheric mass loading. The second is problematic, as can be seen from Figure 2, because all size distributions of sulfate aerosols considered scatter prominently in the forward direction. Thus, an obvious path to avoiding sky whitening is to greatly limit or avoid entirely the intentional introduction of sulfate particles into the stratosphere.

 

 

[25] Acknowledgments. We thank Alan Robock for suggesting this topic and for helpful comments throughout the process of drafting this paper, as well as the reviewers for their comments.

 

[26] The Editor thanks the anonymous reviewers for assisting with the evaluation of this paper.

 

 

 

References

 

Boynton, R. M., W. Schafer, and M. E. Neun (1964), Hue-wavelength relation measured by color-naming method for three retinal locations, Science, 146, 666–668.

 

Corfidi, S. F. (1996), The colors of twilight, Weatherwise, 49(3), 14–19, doi:10.1080/00431672.1996.9925403.

 

Crutzen, P. J. (2006), Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Climatic Change, 77, 211–219, doi:10.1007/s10584-006-9101-y.

 

Dubovik, O., et al. (2002), Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci., 59, 590–608.

 

Govindasamy, B., and K. Caldeira (2000), Geoengineering Earth’s radiation balance to mitigate CO2-induced climate change, Geophys. Res. Lett., 27, 2141–2144, doi:10.1029/1999GL006086.

 

Heckendorn, P., et al. (2009), The impact of geoengineering aerosols on stratospheric temperature and ozone, Environ. Res. Lett., 4, 045108, doi:10.1088/1748-9326/4/4/045108.

 

Mace, G. G., E. E. Clothiaux, and T. P. Ackerman (2001), The composite characteristics of cirrus clouds: Bulk properties revealed by one year of continuous cloud data, J. Clim., 14, 2185–2203.

 

Mayer, B., and A. Kylling (2005), Technical note: The libRadtran software package for radiative transfer calculations—Description and examples of use, Atmos. Chem. Phys., 5, 1855–1857, doi:10.5194/acp-5-1855-2005.

 

Mercado, L. M., N. Bellouin, S. Sitch, O. Boucher, C. Huntingford, M. Wild, and P. M. Cox (2009), Impact of changes in diffuse radiation on the global land carbon sink, Nature, 458, 1014–1017, doi:10.1038/ nature07949.

 

Murphy, D. M. (2009), Effect of stratospheric aerosols on direct sunlight and implications for concentrating solar power, Environ. Sci. Technol., 48(8), 2784–2786, doi:10.1021/es802206b.

 

Pierce, J. R., D. K. Weisenstein, P. Heckendorn, T. Peter, and D. W. Keith (2010), Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft, Geophys. Res. Lett., 37, L18805, doi:10.1029/2010GL043975.

 

Robock, A. (2000), Volcanic eruptions and climate, Rev. Geophys., 38, 191–219, doi:10.1029/1998RG000054.

 

Robock, A. (2008), 20 reasons why geoengineering may be a bad idea, Bull. At. Sci., 64, 14–18, doi:10.2968/064002006.

 

Robock, A. (2011), Bubble, bubble, toil and trouble: An editorial comment, Clim. Change, 105, 383–385, doi:10.1007/s10584-010-0017-1.

 

Smith, G. S. (2005), Human color vision and the unsaturated blue color of the daytime sky, Am. J. Phys., 73, 590–597, doi:10.1119/1.1858479.

 

Stockman, A., and L. T. Sharpe (2000), The spectral sensitivites of the middle and long-wavelength-sensitive cones derived from measurements in observers of known genotype, Vision Res., 40, 1711–1737.

 

Tilmes, S., R. Müller, and R. Salawitch (2008), The sensitivity of polar ozone depletion to proposed geoengineering schemes, Science, 320,1201–1204, doi:10.1126/science.1153966.

 

 

 

Der Planet ist völlig mit Geoengineering-Programmen überzogen.

 

Unten im Bild sieht man die Erde von 1992, bevor diese Geoengineering Programme im globalen Feldversuch im Großmaßstab begonnen hatten. So wird man unsere Erde nie wieder sehen, wenn wir diese hoch giftigen militärischen und zivilen GE-Programme nicht stoppen können.

 

 

 

 

 

Der Geo-Engineering Himmel heute..

 

 

Wir waren die allerletzten Zeit Zeugen eines normalen natürlichen blauen Himmels.

 

NIE WIEDER WIRD DER HIMMEL SO BLAU SEIN.

 

 

Ein künstliches Klima durch SRM Geo-Engineering

 

Sogenannte "Chemtrails" sind SRM Geoengineering-Forschungs-Experimente

 

Illegale Feldversuche der SRM Technik, weltweit.

 

 

Illegale militärische und zivile GE-Forschungen finden in einer rechtlichen Grauzone statt.

 

Feldversuche oder illegale SRM Interventionen wurden nie in nur einem einzigen Land der Welt,  je durch ein Parlament gebracht, deshalb sind sie nicht legalisiert und finden in einer rechtlichen Grauzone der Forschung statt. Regierungen wissen genau, dass sie diese Risiko-Forschung, die absichtliche Veränderung mit dem Wetter nie durch die Parlamente bekommen würden..

Climate-Engineering

HAARP - Die Büchse der Pandora in militärischen Händen

 

 

Illegale zivile und militärische SRM Experimente finden 7 Tage die Woche (nonstop) rund um die Uhr statt. 

 

Auch Nachts - trotz Nacht-

Flugverbot.

 

Geo-Engineering Forschung

 

 

Der Wissenschaftler David Keith, der die Geo-Ingenieure Ken Caldeira und Alan Robock in ihrer Arbeit unterstütztsagte auf einem Geo-Engineering - Seminar am 20. Februar 2010, dass sie beschlossen hätten, ihre stratosphärischen Aerosol-Modelle von Schwefel auf Aluminium umzustellen.

 

Niemand auf der ganzen Welt , zumindest keiner der staatlichen Medien berichtete von diesem wichtigen Ereignis.

 

 

 

 

Wissenschaftler planen 10 bis 20 Megatonnen hoch toxischer Materialien wie Aluminium, synthetischen Nanopartikeln jedes Jahr in unserer Atmosphäre auszubringen.

 

Die Mengenangaben von SRM Materialien werden neuerdings fast immer in Teragramm berechnet. 

 

  1 Teragramm  = 1 Megatonne

  1 Megatonne  = 1 Million Tonnen

 

 

SAI = Stratosphärische

Aerosol Injektionen mit toxischen Materialen wie:

 

  • Aluminiumoxide
  • Black Carbon 
  • Zinkoxid 
  • Siliciumkarbit
  • Diamant
  • Bariumtitanat
  • Bariumsalze
  • Strontium
  • Sulfate
  • Schwefelsäure 
  • Schwefelwasserstoff
  • Carbonylsulfid
  • Ruß-Aerosole
  • Schwefeldioxid
  • Dimethylsulfit
  • Titan
  • Lithium
  • Kalkstaub
  • Titandioxid
  • Natriumchlorid
  • Meersalz 
  • Calciumcarbonat
  • Siliciumdioxid
  • Silicium
  • Bismuttriiodid (BiI3
  • Polymere
  • Polymorph von TiO2

 


 

 

 

April 2016 

Aerosol Experiments Using Lithium and Psychoactive Drugs Over Oregon.

 

 

SKYGUARDS: Petition an das Europäische Parlament

 

 

Wir haben keine Zeit zu verlieren!

 

 

 

Klage gegen Geo-Engineering und Klimapolitik 

 

Der Rechtsweg ist vielleicht die einzige Hoffnung, Geo-Engineering-Programme zum Anhalten zu bewegen. Paris und andere Klimaabkommen schaffen Ziele von rechtlich international verbindlichen Vereinbarungen. Wenn sie erfolgreich sind, werden höchstwahrscheinlich Geoengineering-Programme ohne ein ordentliches Gerichtsverfahren legalisiert. Wenn das geschieht, wird das unsere Fähigkeit Geoengineering zu verhindern und jede Form von rechtlichen Maßnahmen zu ergreifen stark behindern.

 

Ziel dieser Phase ist es, Mittel zu beschaffen um eine US- Klage vorzubereiten. Der Hauptanwalt Wille Tierarzt wählt qualifizierte Juristen aus dem ganzen Land aus, um sicher zu stellen, dass wir Top-Talente sichern, die wir für unser langfristiges Ziel einsetzen.

 

Google Übersetzung 

 

Die Fakten sind, dass seit einem Jahrzehnt am Himmel illegale Wetter -Änderungs-Programme stattfinden, unter Einsatz des Militärs im Rahmen der NATO, ohne Wissen oder Einwilligung der Bevölkerung..

EU-Konferenz und Petition über Wettermodifizierung und Geoengineering in Verbindung mit HAARP Technologien

 

Die Zeit ist gekommen. Anonymous wird nicht länger zusehen. Am 23. April werden wir weltweit gegen Chemtrails und Geoengineering friedlich demonstrieren.

 

Anonymous gegen Geoengineering 

 

 

Wir waren die allerletzten Zeit Zeugen eines normalen natürlichen blauen Himmels.

 

NIE WIEDER WIRD DER HIMMEL SO BLAU SEIN.

 

 

Heute ist der Himmel nicht mehr blau, sondern eher rot oder grau. 

 

 

Metapedia –

Die alternative Enzyklopädie

 

http://de.metapedia.org/wiki/HAARP

 

http://de.metapedia.org/wiki/Chemtrails

 

 

ALLBUCH -

Die neue Enzyklopädie

 

http://de.allbuch.online/wiki/Chemtrails Chemtrails

http://de.allbuch.online/wiki/GeoEngineering GeoEngineering

http://de.allbuch.online/wiki/HAARP HAARP

 

 

 

 

 

SRM - Geoengineering

Aluminium anstatt Schwefeloxid

 

Im Zuge der American Association for the Advancement of Science (AAAS) Conference 2010, San Diego am 20. Februar 2010, wurde vom kanadischen Geoingenieur David W. Keith (University of Calgary) vorgeschlagen, Aluminium anstatt Schwefeldioxid zu verwenden. Begründet wurde dieser Vorschlag mit 1) einem 4-fach größeren Strahlungsantrieb 2) einem ca. 16-fach geringeren Gerinnungsfaktor. Derselbe Albedoeffekt könnte so mit viel geringeren Mengen Aluminium, anstatt Schwefel, bewerkstelligt werden. [13]

 

Mehr Beweise als dieses Video braucht man wohl nicht. >>> Aerosol-Injektionen

 


Das "Geo-Engineering" Klima-Forschungsprogramm der USA wurde direkt dem Weißen Haus unterstellt,

bzw. dort dem White House Office of Science and Technology Policy (OSTP) zugewiesen. 

 

 

Diese Empfehlung lassen bereits das Konfliktpotential dieser GE-Forschung erahnen.

 

 

 

 

 

In den USA fällt Geo-Engineering unter Sicherheitspolitik und Verteidigungspolitik: 

 

 

Geo-Engineering als Sicherheitspolitische Maßnahme..

 

Ein Bericht der NASA merkt an, eine Katastrophensituation könnte die Entscheidung über SRM maßgeblich erleichtern, dann würden politische und ökonomische Einwände irrelevant sein. Die Abschirmung von Sonnenlicht durch SRM Maßnahmen wäre dann die letzte Möglichkeit, um einen katastrophalen Klimawandel abzuwenden.

 

maßgeblich erleichtern..????

 

Nach einer Katastrophensituation sind diese ohnehin illegalen geheimen militärischen SRM Programme wohl noch leichter durch die Parlamente zu bringen unter dem Vorwand der zivilen GE-Forschung. 

 

 

 


Der US-Geheimdienst CIA finanziert mit 630.000 $ für die Jahre   2013/14 

Geoengineering-Studien. Diese Studie wird u.a. auch von zwei anderen staatlichen Stellen NASA und NOAA finanziert. 

 

WARUM SIND DIESE LINKS DER CIA / NASA / NOAA STUDIE ALLE AUS DEM INTERNET WEG ZENSIERT WORDEN, WENN ES DOCH NICHTS ZU VERBERGEN GIBT...?

 

Um möglichst keine Spuren zu hinterlassen.. sind wirklich restlos alle Links im Netz entfernt worden. 

 

 

 

 

 

Es existieren viele Vorschläge zur technologischen Umsetzung des stratosphärischen Aerosol- Schildes.

 

Ein Patent aus dem Jahr 1991 behandelt das Einbringen von Aerosolen in die Stratosphäre

(Chang 1991).

 

Ein neueres Patent behandelt ein Verfahren, in dem Treibstoffzusätze in Verkehrsflugzeugen zum Ausbringen reflektierender Substanzen genutzt werden sollen (Hucko 2009).

 

 

 

Die von Microsoft finanzierte Firma Intellectual Ventures fördert die Entwick­lung eines „Stratoshield“ genannten Verfahrens, bei dem die Aerosolerzeugung in der Strato­sphäre über einen von einem Ballon getragenen Schlauch vom Erdboden aus bewirkt werden soll.

 

 

CE-Technologien wirken entweder symptomatisch oder ursächlich

 

Symptomatisch wirkend: 

Modifikation durch SRM-Geoengineering- Aerosole in der Stratosphäre

 

Ursächlich wirkend: 

Reduktion der CO2 Konzentration (CDR) 

 

Effekte verschiedener Wolkentypen

 

Dicke, tief hängende Wolken reflektieren das Sonnenlicht besonders gut und beeinflussen kaum die Energie, die von der Erde als langwellige Infrarotstrahlung abgegeben wird. Hohe Wolken sind dagegen kälter und meist dünner. Sie lassen daher mehr Sonnenlicht durch, dafür speichern sie anteilig mehr von der langwelligen, abgestrahlten Erdenergie. Um die Erde abzukühlen, sind daher tiefe Wolken das Ziel der Geoingenieure.

 

 

Zirruswolken wirken also generell erwärmend (Lee et al. 2009). Werden diese Wolken künstlich aufgelöst oder verändert, so wird sich in der Regel ein kühlender Effekt ergeben.

 

Nach einem Vorschlag von Mitchell et al.  (2009) könnte dies durch ein Einsäen von effizienten Eiskeimen bei der Wolkenbildung geschehen.

 

 

Eiskeime werden nur in sehr geringer Menge benötigt und könnten beispielsweise durch Verkehrs-Flugzeuge an geeigneten Orten ausgebracht werden. Die benötigten Materialmengen liegen dabei im Bereich von einigen kg pro Flug.

 

 

Die RQ-4 Global Hawk fliegt etwa in 20 Kilometer Höhe ohne Pilot.

1 - 1,5  Tonnen Nutzlast.

 

Instead of visualizing a jet full of people, a jet full of poison.

 

 

Das Militär hat bereits mehr Flugzeuge als für dieses Geo-Engineering-Szenario erforderlich wären, hergestellt. Da der Klimawandel eine wichtige Frage der nationalen Sicherheit ist [Schwartz und Randall, 2003], könnte das Militär für die Durchführung dieser Mission mit bestehenden Flugzeugen zu minimalen Zusatzkosten sein.

 

http://climate.envsci.rutgers.edu/pdf/GRLreview2.pdf

 

 

 

Die künstliche Klima-Kontrolle durch GE

 

Dies sind die Ausbringung von Aerosolpartikeln in der Stratosphäre, sowie die Erhöhung der Wolkenhelligkeit in der Troposphäre mithilfe von künstlichen Kondensationskeimen.

 

 

 

Brisanz von Climate Engineering  (DFG)

 

Climate-Engineering wird bei Klimakonferenzen (z.B. auf dem Weltklimagipfel in Doha) zunehmend diskutiert. Da die Maßnahmen für die angestrebten Klimaziele bisher nicht greifen, wird Climate Engineering als alternative Hilfe in Betracht gezogen.

 

 

x

 

Umweltaktivistin und Trägerin des alternativen Nobelpreises Dr. Rosalie Bertell, berichtet in Ihrem Buch »Kriegswaffe Planet Erde« über die Folgewirkungen und Auswirkungen diverser (Kriegs-) Waffen..

 

Bild anklicken
Bild anklicken

 

Dieses Buch ist ein Muss für jeden Bürger auf diesem Planeten.

 

..Indessen gehen die Militärs ja selbst gar nicht davon aus, dass es überhaupt einen Klimawandel gibt, wie wir aus Bertell´s Buch wissen (Hamilton in Bertell 2011).

 

Sondern das, was wir als Klimawandel bezeichnen, sind die Wirkungen der immer mehr zunehmenden

Wetter-Manipulationen

und Eingriffe ins Erdgeschehen mittels Geoengineering, insbesondere durch die HAARP-ähnlichen Anlagen, die es inzwischen in aller Welt gibt..

 

Bild anklicken
Bild anklicken

 

 

Why in the World are they spraying 

 

Durch die bahnbrechenden Filme von Michael J. Murphy "What in the World Are They Spraying?" und "Why in the world are the Spraying?" wurden Millionen Menschen die Zerstörung durch SRM-Geoengineering-Projekte vor Augen geführt. Seitdem bilden sich weltweit Bewegungen gegen dieses Verbrechen.

 

 

Die Facebook Gruppe Global-Skywatch hat weltweit inzwischen schon über 90.000 Mitglieder und es werden immer mehr Menschen, die die Wahrheit erkennen und die "gebetsmühlenartig" verbreiteten Lügengeschichten der Regierung und Behörden in Bezug zur GE-Forschung zu Recht völlig hinterfragen. 

 

Bild anklicken: Untertitel in deutscher Sprache
Bild anklicken: Untertitel in deutscher Sprache

 

 


ALBEDO ENHANCEMENT BY STRATOSPHERIC SULFUR INJECTIONS


http://faculty.washington.edu/stevehar/Geoengineering_packet.pdf

 

SRM Programme - Ausbringung durch Flugzeuge 

 

 

 

Die Frage die bleibt, ist die Antwort auf  Stratosphärische Aerosol- Injektions- Programme und die tägliche Umweltzer-störung auf unserem Planeten“

 

 

 

Die Arbeit von Brovkin et al. (2009) zeigt für ein Emissionsszenario ohne Emissionskontrolle, dass der Einsatz von RM für mehrere 1000 Jahre fortgesetzt werden muss, je nachdem wie vollständig der Treibhausgas-induzierte Strahlungsantrieb kompensiert werden soll.

 

 

 

Falls sich die Befürchtung bewahrheitet, dass eine Unterbrechung von RM-Maßnahmen zu abruptem Klimawandel führt, kann sich durch den CE-Einsatz ein Lock-in-Effekt ergeben. Die hohen gesamtwirtschaftlichen Kosten dieses abrupten Klimawandels würden sozusagen eine Weiterführung der RM-Maßnahmen erzwingen.

 

 

 

 

Ausbringungsmöglichkeiten

 

Neben den Studien von CSEPP (1992) und Robock et al. (2009), ist insbesondere die aktuelle Studie von McClellan et al. (2010) hervorzuheben. Für die Ausbringung mit Flugsystemen wird angenommen, dass das Material mit einer Rate von 0,03 kg/m freigesetzt wird. Es werden Ausbringungshöhen von 13 bis 30 km untersucht.

 

 

 

 

Bestehende kleine Düsenjäger, wie der F-15C Eagle, sind in der Lage in der unteren Stratosphäre in den Tropen zu fliegen, während in der Arktis größere Flugzeuge wie die KC-135 Stratotanker oder KC-10 Extender in der Lage sind, die gewünschten Höhen zu erreichen.

x

 

SRM Protest-Märsche gleichzeitig in circa 150 Städten - weltweit.

 

Geoengineering-Forschung als Plan B für eine weltweit verfehlte Klimapolik. 

 

Bild anklicken:
Bild anklicken:

 

Staaten führen illegale Wetter-Änderungs-Techniken als globales Experiment gegen den Klimawandel durch, geregelt über die UN, ausgeführt durch die NATO, mit militärischen Flugzeugen werden jährlich 10-20 Millionen Tonnen hoch giftiger Substanzen in den Himmel gesprüht..

 

Giftige Substanzen, wie Aluminium, Barium, Strontium, die unsere Böden verseuchen und die auch auf Dauer den ph-Wert des Bodens deutlich verändern würden. Es sind giftige Substanzen, wie Schwefel, welches die Ozonschicht systematisch zerstören würde. 

 

x

 

 

 

Weltweite  Protestmärsche gegen globale Geoengineering Experimente finden am 25. April 2015 in all diesen Städten gleichzeitig statt:

 

 

 

AUSTRALIEN - (Adelaide)

AUSTRALIEN - (Albury-Wodonga)

AUSTRALIEN - (Bendigo)

AUSTRALIEN - (Brisbane)

AUSTRALIEN - (Byron Bay)

AUSTRALIEN - (Cairns)

AUSTRALIEN - (Canberra)

AUSTRALIEN - (Darwin)

AUSTRALIEN - (Gold Coast)

AUSTRALIEN - (Hobart)

AUSTRALIEN - (Melbourne)

AUSTRALIEN - (Newcastle)

AUSTRALIEN - (New South Wales, Byron Bay)

AUSTRALIEN - (Perth)

AUSTRALIEN - (Port Macquarie)

AUSTRALIEN - (South Coast NSW)

AUSTRALIEN - (South East Qeensland)

AUSTRALIEN - (Sunshine Coast)

AUSTRALIEN - (Sydney)

AUSTRALIEN - (Tasmania)

BELGIEN - (Brüssel)

BELGIEN - (Brüssel Group)

BRASILIEN - (Curitiba)

BRASILIEN - (Porto Allegre)

BULGARIEN - (Sofia)

Kanada - Alberta - (Calgary)

Kanada - Alberta - (Edmonton)

Kanada - Alberta - (Fort Saskatchewan)

Kanada - British Columbia - (Vancouver Group)

Kanada - British Columbia - (Victoria)

Kanada - Manitobak - (Winnipeg)

Kanada – Neufundland

Kanada - Ontario - (Barrie)

Kanada - Ontario - (Cambridge)

Kanada - Ontario - (Hamilton)

Kanada - Ontario - (London)

Kanada - Ontario - (Toronto)

Kanada - Ontario  - (Ottawa)

Kanada - Ontario - (Windsor)

Kanada - Québec - (Montreal)

KOLUMBIEN - (Medellin)

ZYPERN

KROATIEN - (Zagreb)

DÄNEMARK - (Aalborg)

DÄNEMARK - (Kopenhagen)

DÄNEMARK - (Odense)

ESTLAND - (Tallinn)

Ägypten (Alexandria)

FINNLAND - (Helsinki)

FRANKREICH - (Paris)

DEUTSCHLAND - (Berlin)

DEUTSCHLAND - (Köln)

DEUTSCHLAND - (Düsseldorf)

DEUTSCHLAND - HESSEN - (Wetzlar)

GRIECHENLAND - (Athens)

GRIECHENLAND - (Attica)

Ungarn (Budapest)

IRLAND - (Cork City)

IRLAND - (Galway)

ITALIEN - (Milano)

Italien - Sardinien - (Cagliari)

MAROKKO - (Rabat)

NIEDERLANDE - (Den Haag)

NIEDERLANDE - (Groningen)

NEUSEELAND - (Auckland)

NEUSEELAND - (Christchurch)

NEUSEELAND - (Hamilton)

NEUSEELAND - (Nelson)

NEUSEELAND - (New Plymouth)

NEUSEELAND - (Takaka)

NEUSEELAND - (Taupo)

NEUSEELAND - (Wellington)

NEUSEELAND - (Whangerei)

NEUSEELAND - WEST COAST - (Greymouth)

NORWEGEN-(Bergen)

NORWEGEN - (Oslo)

PORTUGAL - (Lissabon)

SERBIEN - (Glavni Gradovi)

SERBIEN - (Nis)

SLOWENIEN

SPANIEN - (Barcelona)

SPANIEN - (La Coruna)

SPANIEN - (Ibiza)

SPANIEN - (Murcia)

SPANIEN - (San Juan - Alicante)

SCHWEDEN - (Gothenburg)

SCHWEDEN - (Stockholm)

SCHWEIZ - (Bern)

SCHWEIZ - (Genf)

SCHWEIZ - (Zürich)

UK - ENGLAND - (London)

UK - ISLE OF MAN - (Douglas)

UK - Lancashir - (Burnley)

UK - Scotland - (Glasgow)

UK - Cornwall - (Truro)

USA - Alaska - (Anchorage)

USA - Arizona - (Flagstaff)

USA - Arizona - (Tucson)

USA - Arkansas - (Hot Springs)

USA - Kalifornien - (Hemet)

USA - CALIFORINA - (Los Angeles)

USA - Kalifornien - (Redding)

USA - Kalifornien - (Sacramento)

USA - Kalifornien - (San Diego)

USA - Kalifornien - (Santa Cruz)

USA - Kalifornien - (San Francisco)

USA - Kalifornien - Orange County - (Newport Beach)

USA - Colorado - (Denver)

USA - Connecticut - (New Haven)

USA - Florida - (Boca Raton)

USA - Florida - (Cocoa Beach)

USA - Florida - (Miami)

USA - Florida - (Tampa)

USA - Georgia - (Gainesville)

USA - Illinois - (Chicago)

USA - Hawaii - (Maui)

USA - Iowa - (Davenport)

USA - Kentucky - (Louisville)

USA - LOUISIANA - (New Orleans)

USA - Maine - (Auburn)

USA - Maryland - (Easton)

USA - Massachusetts - (Worcester)

USA - Minnesota - (St. Paul)

USA - Missouri - (St. Louis)

USA - Montana - (Missoula)

USA - NEVADA - (Black Rock City)

USA - NEVADA - (Las Vegas)

USA - NEVADA - (Reno)

USA - New Jersey - (Red Bank)

USA - New Mexico (Northern)

USA - NEW YORK - (Ithaca)

USA - NEW YORK - (Long Island)

USA - NEW YORK - (New York City)

USA - NORTH CAROLINA - (Asheville)

USA - NORTH CAROLINA - (Charlotte)

USA - NORTH CAROLINA - (Greensboro)

USA - Oregon - (Ashland)

USA - Oregon - (Portland)

USA - Pennsylvania - (Harrisburg)

USA - Pennsylvania - (Pittsburgh)

USA - Pennsylvania - (West Chester)

USA - Pennsylvania - (Wilkes - Barre)

USA - SOUTH CAROLINA - (Charleston)

USA - Tennessee - (Memphis)

USA - Texas - (Austin)

USA - Texas - (Dallas / Metroplex)

USA - Texas - (Houston)

USA - Texas - (San Antonio)

USA - Vermont - (Burlington)

USA - Virginia - (Richmond)

USA - Virginia - (Virginia Beach)

USA - WASHINGTON - (Seattle)

USA - Wisconsin - (Milwaukee)

 

Bild anklickem: Holger Strom Webseite
Bild anklickem: Holger Strom Webseite

 

Der Film zeigt eindrucksvolle Beispiele, beginnend beim Einsatz der Atombomben mit ihren schrecklichen Auswirkungen bis hin zu den gesundheitszerstörenden, ja tödlichen Hinterlassenschaften der Atomenergienutzung durch die Energiewirtschaft. Eine besondere Stärke des Films liegt in den Aussagen zahlreicher, unabhängiger Fachleute. Sie erläutern mit ihrem in Jahrzehnten eigener Forschung und Erfahrung gesammelten Wissen Sachverhalte und Zusammenhänge, welche die Befürworter und Nutznießer der Atomtechnologie in Politik, Wirtschaft und Militärwesen gerne im Verborgenen halten wollen.

                                             

Prof. Dr. med. Dr. h. c. Edmund Lengfelder

 

 

Nicht viel anders gehen Politiker/ Abgeordnete des Deutschen Bundestages mit der hoch toxischen riskanten SRM Geoengineering-Forschung um, um diese riskante Forschung durch die Parlamente zu bekommen.

 

Es wird mit gefährlichen Halbwissen und Halbwahrheiten gearbeitet. Sie werden Risiken vertuschen, verdrehen und diese Experimente als das einzig Richtige gegen den drohenden Klimawandel verkaufen. Chemtrails sind Stratosphärische Aerosol Injektionen, die  illegal auf globaler Ebene stattfinden, ohne jeglichen Parlament-Beschluss der beteiligten Regierungen.

 

Geoengineering-Projekte einmal begonnen, sollen für Jahrtausende fortgeführt werden - ohne Unterbrechung (auch bei finanziellen Engpässen oder sonstigen Unruhen) um nicht einen Umkehreffekt  auszulösen.

 

Das erzählt Ihnen die Regierung natürlich nicht, um diese illegale hochgefährliche RM Forschung nur ansatzweise durch die Parlamente zu bringen.

 

Spätestens seit dem Atommüll-Skandal mit dem Forschungs-Projekt ASSE wissen wir Bürger/Innen, wie Politik und Wissenschaft mit Forschungs-Risiken umgehen.. Diese Gefahren und Risiken werden dann den Bürgern einfach verschwiegen. 

 

 


 

 

www.climate-engineering.eu

 

Am 30. September 2012 ist eine neue Internetplattform zu Climate Engineering online gegangen www.climate-engineering.eu  

 

Die Plattform enthält alle neuen Infos -Publikationen, Veranstaltungen etc. zu Climate-Engineering.

 

 

 

 

Gezielte Eingriffe in das Klima?

Eine Bestandsaufnahme der Debatte zu Climate Engineering

Kieler Earth Institute

 

 

Climate Engineering:

Ethische Aspekte

Karlsruher Institut für Technologie

 

 

Climate Engineering:

Chancen und Risiken einer Beeinflussung der Erderwärmung. Naturwissenschaftliche und technische Aspekte

Leibniz-Institut für Troposphärenforschung, Leipzig

 

Climate Engineering:

Wirtschaftliche Aspekte 

Kiel Earth Institute

 

 

Climate Engineering:

Risikowahrnehmung, gesellschaftliche Risikodiskurse und Optionen der Öffentlichkeitsbeteiligung

Dialogik Stuttgart

 

 

Climate Engineering:

Instrumente und Institutionen des internationalen Rechts

Universität Trier

 

 

Climate Engineering:

Internationale Beziehungen und politische Regulierung

Wissenschaftszentrum Berlin für Sozialforschung

 

 

 

Illegale Atmosphären-Experimente finden in Deutschland  seit  2012 „täglich“ am Himmel statt.

 

Chemtrails  -  Verschwörung am Himmel ? Wettermanipulation unter den Augen der Öffentlichkeit

 

Auszug aus dem Buch: 

 

Ich behaupte, dass in etwa 2 bis 3 mal pro Woche, ungefähr ein halbes Dutzend  von frühmorgens bis spätabends in einer Art und Weise Wien überfliegen, die logisch nicht erklärbar ist. Diese Maschinen führen über dem Stadtgebiet manchmal auffällige Steig- und Sinkflüge durch , sie fliegen Bögen und sie drehen abrupt ab. Und sie hinterlassen überall ihre dauerhaft beständigen Kondensstreifen, welche auch ich Chemtrails nenne. Sie verschleiern an manchen Tagen ganz Wien und rundherum am Horizont ist strahlend blauer ...
Hier in diesem Buch  aus dem Jahr 2005 werden die anfänglichen stratosphärischen SRM-Experimente am Himmel beschrieben... inzwischen fliegen die Chemie-Bomber ja 24 h Nonstop, rund um die Uhr.

 

 

 

 

Weather Modification Patente

 

http://weatherpeace.blogspot.de

 

Umfangreiche Liste der Patente

http://www.geoengineeringwatch.org/links-to-geoengineering-patents/

 

 

 

 

 

 

 

 

 

 

Von Pat Mooney - Er ist Gründer und Geschäftsführer der kanadischen Umweltschutzorganisation ETC Group in Ottawa.

 

Im Jahr 1975 tat sich der US-Geheimdienst CIA mit Newsweek zusammen und warnte vor globaler Abkühlung. Im selben Jahr wiesen britische Wissenschaftler die Existenz eines Lochs in der Ozonschicht über der Antarktis nach und die UN-Vollversammlung befasste sich mit identischen Anträgen der Sowjetunion und der USA für ein Verbot von Klimamanipulationen, die militärischen Zwecken dienen. Dreißig Jahre später redeten alle - auch der US-Präsident über globale Erwärmung. 

 

Wissenschaftler warnten, der Temperaturanstieg über dem arktischen Eis  und im sibirischen Permafrost könnte in die Klimakatastrophe führen, und der US-Senat erklärte sich bereit , eine Vorlage zu prüfen, mit der Eingriffe in das Klima erlaubt werden sollten. 

 

Geo-Engineering ist heute Realität. Seit dem Debakel von Kopenhagen bemüht sich die große Politik zusammen mit ein paar Milliardären verstärkt darum, großtechnische Szenarien zu prüfen und die entsprechenden Experimente durchzuführen.

 

Seit Anfang 2009 überbieten sich die Medien mit Geschichten über Geoengineering als "Plan B". Wissenschaftliche Institute und Nobelpreisträger legen Berichte und Anträge vor, um die Politik zur Finanzierung von Feldversuchen zu bewegen. Im britischem Parlament wie im US-Kongress haben die Anhörungen schon begonnen. Anfang 2010 berichteten Journalisten, Bill Gates investiere privat in Geoengineering-Forschung und werde bei Geoengineering-Patenten zur Senkung der Meerestemperatur und zur Steuerung von Hurrikanen sogar als Miterfinder genannt. Unterdesssen hat Sir Richard Branson - Gründer und Besitzer der Fluglinie Virgin Air - verkündet, er habe eine Kommandozentrale für den Klimakrieg eingerichtet und sei für alle klimatechnischen Optionen offen. Zuvor hatte er 25 Millionen Dollar für eine Technik ausgesetzt, mit der sich die Stratosphäre reinigen lässt. 

 

Einige der reichsten Männer der Welt (z.B. Richard Branson und Bill Gates ) und die mächtigsten Konzerne (z.B. Shell , Boeing ) werden immer beteiligt.

 

Geoengineering Karte - ETC Group

 

ETC Group veröffentlicht eine Weltkarte über Geoengineering-Experimente, die groß angelegte Manipulation des Klimas unserer Erde.  Zwar gibt es keine vollständige Aufzeichnung von Wetter und Klima-Projekten in Dutzenden von Ländern, diese Karte ist aber der erste Versuch, um den expandierenden Umfang der Forschungs-Experimente zu dokumentieren. 

 

Fast 300 Geo-Engineering-Projekte / Experimente sind auf der Karte vertreten, die zu den verschiedenen Arten von Klima-Änderungs-Technologien gehören.

Einfach anklicken und vergrößern..
Einfach anklicken und vergrößern..

 

Aus der Sicht der reichen Länder (und ihrer Unternehmen) erscheint Geoengineering einfach perfekt. Es ist machbar. Es ist (relativ) billig. Und es erlaubt der Industrie, den Umbau unserer Wirtschaft und Produktionsweise für überflüssig zu erklären.

 

Das wichtigste aber ist: Geoengineering braucht keinerlei internationale Übereinkunft. Länder, Unternehmen, ja sogar superreiche Geo-Piraten können es auf eigene Faust durchziehen. Eine bescheidene >Koalition der Willigen< genügt vollauf, und eine Handvoll Akteure kann den Planeten nach Belieben umbauen.

 

Damit wir es nicht vergessen:

 

Seit 1945  führten die USA, die UdSSR, England, Frankreich und später auch China mehr als 2000 Atomtests durch – über und unter der Erde und ohne Rücksicht auf die zu erwartenden Auswirkungen auf Gesundheit und Umwelt weltweit. Niemand wurde um Erlaubnis gefragt. Wenn das Weltklima zu kippen droht, werden sie da wirklich vor einseitigen Entscheidungen zurückschrecken? 

 

 

 

Warum ist Geo-Engineering nicht akzeptabel..?

 

SRM Geoengineering kann nicht im Labor getestet werden: Es ist keine experimentelle Labor-Phase möglich, um einen spürbaren Einfluss auf das Klima zu haben. Geo-Engineering muss massiv eingesetzt werden.

 

Experimente oder Feldversuche entsprechen tatsächlich den Einsatz in der realen Welt, da kleine Tests nicht die Daten auf Klimaeffekte liefern.

 

Auswirkungen für die Menschen und die biologische Vielfalt würden wahrscheinlich sofort massiv und möglicherweise irreversibel sein.

 

 

 

 

Hände weg von Mutter Erde (HOME) ist eine weltweite Kampagne, um unserem kostbaren Planeten Erde, gegen die Bedrohung durch Geo-Engineering-Experimente zu verteidigen. Gehen Sie mit uns, um eine klare Botschaft an die Geo-Ingenieure und die Regierungen weltweit zu senden, dass unsere Erde kein ein Labor ist.

 

x

Liste der (SRM) Geoengineering-Forschung

Hier anklicken:
Hier anklicken:

http://www.ww.w.givewell.org/files/shallow/geoengineering/Geoengineering research funding 10-9-13.xls

 

Weltweite Liste der Geoengineering-Forschung SRM Forschungs Länder: 

 

Großbritannien, Vereinigte Staaten Amerika, Deutschland, Frankreich, Norwegen, Finnland, Österreich und Japan.

 

 

In "NEXT BANG!" beschreibt Pat Money neue Risikotechnologien, die heute von Wissenschaftlern, Politikern und mächtigen Finanziers aktiv für den kommerziellen Einsatz vorbereitet werden:

 

Geo-Engineering, Nanotechnologie, oder die künstliche >Verbesserung< des menschlichen Körpers.

 

"Die  Brisanz des Buches liegt darin, dass es zeigt, wie die Technologien, die unsere Zukunft bestimmen könnten, heute zum großflächigen Einsatz vorbereitet werden – und das weitgehend unbemerkt von der Öffentlichkeit. Atomkraft, toxische Chemikalien oder genmanipulierte Organismen konnten deshalb nicht durch demokratische Entscheidungen verhindert werden, weil hinter ihnen bereits eine zu große ökonomische und politische Macht stand, als ihre Risiken vielen Menschen erst bewusst wurden.

 

Deshalb dürfen wir die Diskussion über Geoengineering, Nanotechnologie, synthetische Biologie  und die anderen neuen Risikotechnologien nicht länger den selbsternannten Experten überlassen. Die Entscheidungen über ihren künftigen Einsatz fallen jetzt - es ist eine Frage der Demokratie, dass wir alle dabei mitreden."

 

Ole von UexküllDirektor der Right Livelihood Award Foundation, die den Alternativen Nobelpreis vergibt

 

 

Vanishing of the Bees - No Bees, No Food !

 

Verschwinden der Bienen  - Keine Bienen, kein Essen !

 

http://www.beeheroic.com/geoengineering-and-environment

http://www.beeheroic.com/resources

 

 

 

 

 

Solar Radiation Management = SRM

Es ist zu beachten, dass SRM Maßnahmen zwar auf kurzer Zeitskala wirksam werden können, die Dauer ihres Einsatzes aber an der Lebensdauer des CO-2 gebunden ist, welches mehrere Tausend Jahre beträgt.

 

CDR- Maßnahmen hingegen müssten über einen sehr langen Zeitraum (viele Jahrzehnte) aufgebaut werden, ihr Einsatz könnte allerdings beendet werden, sobald die CO2 Konzentration wieder auf ein akzeptables Niveau gesenkt ist. Entsprechende Anstrengungen vorausgesetzt, könnte dies bereits nach einigen Hundert Jahren erreicht sein.

 

CDR Maßnahmen: sind relativ teuer und arbeiten viel zu langsam. Bis sie wirken würden, vergehen viele Jahrzehnte

 

Solar Radiation Management SRM Maßnahmen: billig.. und schnell..

 

 

Quelle: Institut für Technikfolgenabschätzung

 

 

 

 

 

Solar Radiation Management = SRM

 

Ironie der Geoengineering Forschung:

 

Ein früherer SRM Abbruch hätte einen abrupten sehr heftigen Klimawandel zur Folge, den wir in dieser Schnelligkeit und heftigen Form nie ohne diese SRM Maßnahmen gehabt hätten. 

 

Das, was Regierungen mit den globalen GEO-ENGINEERING-INTERVENTIONEN verhindern wollten, genau das wären dann die globalen Folgeschäden bei der frühzeitigen Beendigung der SRM Forschungs-Interventionen.

 

Wenn sie diese hoch giftigen SAI - Programme  aus wichtigen Gründen vorher abbrechen müssten, droht uns ein abrupter Klimawandel, der ohne diese GE-Programme nie dagewesen wäre. 

 

Das bezeichne ich doch mal  als wahre  reale Satire..