The Security Implications of Geoengineering: Blame, Imposed Agreement and the Security of Critical Infrastructure



Paul Nightingale & Rose Cairns

Climate Geoengineering Governance Working Paper Series: 018.

Science and Technology Policy Research (SPRU), University of Sussex


Originally published online 12 November 2014


This edition with minor revisions 13 February 2015



About the Authors


Paul Nightingale ( is Deputy Director of SPRU, at the University of Sussex, and a visiting Professor in the Strategy Group at Cass Business School. His research interests relate to the regulation of technology, change in large technical systems and biosecurity (dual use). Paul is a researcher on the Climate Geoengineering Project and works on the governance of geoengineering technologies, and the influence of governance practices on innovation and the application of geoengineering technology.


Rose Cairns ( is a research fellow at SPRU – Science and Technology Policy Research, at the University of Sussex. Her primary research interests are in environmental politics and governance, participatory research methods and discourse analysis, and the theory and practice of interdisciplinary research for sustainability. Rose completed her PhD on conservation politics on the Galápagos Islands from Leeds University in 2012. She also holds an MSc in Conservation and Biodiversity from Exeter University, and a BA in Social Anthropology from Cambridge University. Prior to her recent roles in academia Rose worked for a number of years in environmental campaigning and the voluntary sector.





The prospect of geoengineering in response to climate change raises a number of security concerns that have traditionally been understood within a standard geo-political framing of security. This relates to their direct application in inter-State warfare or to a securitisation of climate change. While direct military applications are unrealistic, indirect security implications are potentially significant. Current capability, security threats and international law loopholes suggest the military, rather than scientists would undertake SRM. SRM activity would be covered by Critical National Infrastructure policies, which would necessitate a significant level of secondary security infrastructure to protect them. Concerns about termination effects, the need to impose international policy agreement (given the ability of 'Rogue States' to disrupt SRM and existing difficulties in producing global agreement on climate policy), and a world of extreme weather events, where weather is engineered and hence blameworthy rather than natural, suggest these cost may well be large. Evidence on how blame is attributed suggest blame for extreme weather events may be directed towards more technologically advanced nations, (such as the USA) even if they are not engaged in geoengineering. From a security perspective SRM may well end up being very costly, and difficult to govern. These secondary security concerns are of a sufficient magnitude to suggest that questions can be raised about the viability of geoengineering (SRM) as a policy option.



1. Introduction


In recent years, as concern over climate change has increased, geoengineering has emerged as a policy option that is increasingly taken seriously (IPCC, 2013; Crutzen, 2006). While a range of technologies are captured by the category of geoengineering, only solar radiation management, and specifically stratospheric aerosol injection is generally accepted to be a technically feasible means of impacting on global temperatures in a relatively short time period, and hence is our focus here. Increased interest in geoengineering has been partly driven by perceptions that it offers a way of addressing climate change at a significantly lower cost than alternatives. However, these estimates of future costs have been criticized for their lack of realism as they only focus on direct costs (MacKerron, 2014). High fixed-cost, capital-intensive technologies like geoengineering are characterised by both significant uncertainties and cognitive biases that tend to under-estimate their future costs (ibid).


Major technical systems typically require extended secondary supporting technologies, systems, and governance structures which will only become apparent as technologies progress from imagined ideas to implemented real-world technologies. At present geoengineering remains an imaginary idea, not yet at the proof of concept stage, with an inherent danger that assumptions about its social impact will be biased. At early stages of technology development, expectations of costs are typically based on extrapolating from existing systems. This is subject to survivor bias, as most early-stage technologies fail, making the successes atypical and biasing perceptions of economic and social costs downwards.


Early stage evaluation of the social distribution of costs and benefits (risks and rewards) is therefore subject to very large uncertainties. Given the speculative nature of impacts, the approach of this paper is to highlight some previously overlooked indirect security concerns, and evaluate their magnitudes based on assumptions about the stability of security policy over the next 40 or so years. Doing so suggests the indirect economic and social costs of the security infrastructure that is likely to be needed to enable SRM will be considerable. This is based on four assumptions:


1. Rather than scientists being in charge of geoengineering, as is often implicitly assumed, the military are likely to play a significant role given current capability, the securitisation of climate change, perceived termination risks and loop-holes that exist in international legal frameworks that will constrain non-military developments. Given current US security policy and doctrine it is unlikely that the US Congress would allow non-US control over geoengineering activity.


2. SRM activity would be likely to be classified as Critical National Infrastructure and subject to a range of security requirements that would potentially be very costly.


3. The costs of this security infrastructure would depend on its temporal scope, geographic scope, and level of intensity. The temporal scope could potentially be many hundreds of years. The geographic scope could be global given the limited political ability of governments to agree on climate change policy and the ability of 'rogue' States to easily counteract any geoengineering efforts. The intensity could be very high because of perceptions of risks from the termination effect, and if geoengineering is imposed and subject to resistance, particularly if that resistance takes a violent form and is directed towards soft targets.


4. The intensity of global security provision is likely to be further increased given the inevitable extreme weather events that will occur around the world during its operation. Once SRM is in operation these will

often be seen as engineered outcomes rather than random events, and hence subject to a moral calculus of blame. Individuals and groups may take revenge against the citizens and interests of the States perceived to be involved.


Together these four assumptions suggest that the magnitude of the social and economic costs of security for geoengineering may well be very high, and arguably significantly higher than the direct costs. The political costs may also be very high given the combination of security concerns and in a worst case scenario could imply a dystopian future. A worst case scenario is unlikely, and could easily be avoided, but its existence suggests a broader analysis of the costs of SRM would be useful to inform policy making.



2. Direct and Indirect Security Concerns


In discussing security implications of geoengineering it is important to clarify some key distinctions and terminology in order to avoid conflating the distinction between hostile and peaceful activities with the distinction between military and civilian activity. War is organised violence threatened or under-taken for political purposes. War reflects a relationship between belligerents, who are not necessarily states with organised military forces (Gray, 2010: 37). Warfare is the conduct of organised violence in war, and typically carried out by militaries, but also by non-State actors (Kaldor, 2000). Military activity however also includes a wide range of activities that are not hostile (for example, transportation, medical care and logistics). Security is a state of being free of danger or its threat, and hence has dimensions related to who is free of the threat - traditionally States, but increasingly individuals - and what those threats are - traditionally military hostility but increasingly non-military threats such as climate change.


Military capability can address threats both directly and indirectly (for example through deterrence) and can be applied to protect different kinds of actors from a variety of threats. Technologies that underpin these military capabilities can in some instances be dual use. In the arms control arena, dual use refers to the features of technologies that enable them to be applied to both hostile and peaceful ends with few or no modifications (Molas-Gallart and Robinson, 1997) while in the economic sphere it applies to technologies that can be applied in both military and civilian settings.


Given these distinctions it should be clear that the security implications of geoengineering go beyond direct application of dual use geoengineering technologies for hostile activity within a war setting. If geoengineering technologies worked, they could potentially be used by the military for non-hostile activity, for example in humanitarian interventions. Moreover, the security implications of geoengineering also address how it might mitigate or enhance wider threats. Indirect security concerns cover both the security infrastructure that would be needed to protect geoengineering projects from external threats, and the security concerns that this security infrastructure might itself endanger. In the next two sub-sections we contrast direct and indirect security concerns.



2.1 Direct Military Use


Interest in the direct military use of geoengineering and other weather modification technologies has a long history (Fleming, 2006; 2010), going back to Francis Bacon's prediction that one day science would allow control of the weather (1606). Langmuir's discovery in the 1940s that silver iodide could be used to seed clouds generated a range of military projects, which expanded considerably in the 1950s with military backing. In 1958 the NSF became the lead agency for research into weather modification.


The 1950s were characterised by a shift in the scale at which military planners and weapons developers thought, generating suggestions for approaches to military engagement with global impacts. Of these nuclear weapons remained the most viable, particularly mass air-burst weapons with the potential to generate firestorms that would have a global impact. However, there was interest in using cloud seeding techniques to address natural threats, such as hurricanes. This, for example, was addressed in project Cirrus which ran from 1947 to 1952 (Havens, 1952).


While there was considerable interest in the military application of weather modification, the technology was plagued by uncertainty about its impact. The inherently unpredictable nature of the weather made it

impossible to predict counter-factual outcomes of what the weather would have been like without an intervention. Hence it is impossible to robustly assess the impact, or lack of impact, of weather modification measures. For example project Stormfury, funded by the US Navy and US department of Commerce ran from 1962 to 1983, and attempted to modify hurricanes using cloud seeding techniques. The impacts were inconclusive because of the difficulties of determining the effects caused by the treatment in the absence of a solid understanding of outcomes under the counter factual untreated scenario (Cairns, 2014; Willoughby et al. 1982, p.411).


Nonetheless, the US military applied such techniques during the Vietnam War and operated a secret cloud seeding program, codenamed Popeye, over North and South Vietnam, Laos and Cambodia from 1967 to 1972. The aim was to extend the rainy season and disrupt the flows of logistics along the Ho Chi Minh trail by flying over 2,600 cloud seeding sorties using 47,000 silver iodide flares. Trials of Popeye began in Laos in 1966 and were extended in the 'Motorpool' operational phase in 1967 (McLeish, 2014). The operation was exposed by Jack Anderson in his Washington Post column in 1971, followed by an article in Science in June and then in 1972 an extended article by Hersh (1972) in the New York Times.


The exposure led to a Senate investigation, the unilateral decision by the US to renounce the military application of climate modification techniques in 1972 and the passing of a resolution urging President Nixon to begin international negotiations to ban the practice. This eventually led to the Convention on the Prohibition of Military or Any Other Hostile Use of Environmental Modification Techniques (ENMOD), negotiated in parallel with the SALT negotiations. Bilateral discussions started in 1974; identical texts were issued in 1975, which were finalised on the 10th December 1975. ENMOD entered into force on 5 October 1978 and prohibits the hostile use of environmental modification techniques that have widespread, long-lasting or severe effects as the means of destruction, damage or injury to any other State Party.


The legal ban on the use of weather modification techniques for hostile (but not peaceful purposes) in the Treaty, as well as the limited effectiveness and significant uncertainty about whether such techniques have any meaningful impact, have lessened military interest in weather modification. Funding fell to $500,000 by the 1990s, but in 2003 the NRC (2003) called for increased research, and in 2008 the Department for Homeland Security convened a workshop on weather modification to address national security threats (i.e. hurricanes).


While weather modification programmes remain extensive in China (Xueliang, 2009; Edney, & Symons, 2013), in the West there is limited practical military interest given the uncertainties involved and the existence of cheaper, more effective solutions to all the potential applications of weather modification techniques in a military setting. In the 1960s unguided munitions were extremely inaccurate and muddying up the Ho Chi Minh trail with additional rain may have seemed a viable option. Today with guided munitions, battlefield surveillance and improved vehicles, the application of weather modification seems a quaint historical dead end.


Despite this lack of interest, increased attention to geoengineering in the scientific community has seen an increase in the attention given to the military use of weather modification techniques on a greater than local scale (Foreign Affairs, 2012). Such applications are banned by an international convention, have limited military use (Briggs, 2013) given the inherent unpredictability of weather systems, (caused by the laws of physics and hence not amenable to change by technology), and compete  against cheaper, more effective alternative means of achieving the same military ends. 1



3. Indirect Security Implications


While the direct relevance of solar geoengineering to security settings is probably minimal (despite significant funding) the indirect security implications may well be considerable. A first point to highlight is that the widespread assumption that geoengineering will be undertaken by scientists is questionable. Instead there are a number of reasons for thinking that the military rather than scientists will run solar geoengineering projects.


The first reason relates to capability, and the experience the military has of running large complex technical projects. Existing weather modification programmes in China for example exploit artillery and rockets, both technologies with military applications that are under the PLA's control. A second reason relates to the increasing securisation of climate change policy, where geoengineering is seen as a solution to a wider climate change problem which is itself framed as a security problem. For example the UK MOD, the UN (2007; 2011), the RUSI and the US (CNA, 2007) see climate change as a security threat (see also Campbell, et al 2007; Clapper, 2014). The underlying assumption is that climate change can destabilize weakened and failing governments, leading to conflicts, mass migrations, ethnic tension and extremism (see Homer-Dixon, 1991, and in a more apocalyptic tone Kaplan 1994). However, the supposed direct links between scarcity and insecurity are more complex and context dependent than this literature suggests (Eastin, et al 2011) making the link to geoengineering unclear. A related body of research frames the security threat of climate change in terms of human security rather than traditional inter-state security, arguing that geoengineering may be a responsible approach to address the security threats to individuals posed by major changes in climate. In each instance a security framing directs policy implementation towards military settings.


A third reason relates to exemptions and sovereign immunity clauses based on national security concerns in international law. These provide ways of avoiding legal constraints on geoengineering activity that would apply to non-military activity.


A fourth reason relates to current US security policy and doctrine, whereby it is extremely unlikely that Congress would approve the development of geoengineering systems under United Nations or other international organisations control. Moreover, given the perceived risks of a potential termination effect, it is also unlikely that Congress would accept another State, such as China, or group of States, such as the EU, producing technological systems whose failure could pose a catastrophic risk to the US.


Since the 1950s US foreign policy has been characterised by a set of norms that sees the US as taking a leadership role in security matters, with a unique responsibility for deciding and enforcing those norms

(Bacevich, 2010). These norms are enforced through a mix of soft and hard power, with the US negotiating from a position of strength based on a level of distributed military resources, structured for interventionist global power projection, far in excess of all other nations combined. US military policy divides the world up into unified commands Pacific, Central, European, Africa, Southern, Northern, Space and Strategic - structured for intervention and acting to prevent the emergence of competing powers in any region. A key part of this, involves acting to prevent the development of military capabilities that might threaten US interests, by States unaligned with US norms.


In the security domain, perceptions of threats, which can be highly uncertain and unlikely, play important roles in policy. The perceptions that geoengineering would create a potential doomsday device, which if

stopped would rapidly lead to a catastrophic 'termination effect', could easily be perceived to present a threat to US security. Under such circumstances it would be reasonable to assume that there would be considerable US security interest and a desire to have it under US security control or at least subject to considerable oversight. The notion that North Korea, Iran, Russia, China or even the EU could develop a geoengineering capability without generating concern in Washington is unrealistic.


Lastly, given the perceived (or constructed) risks of termination, geoengineering is likely to be geographically distributed to spread risks. This again suggests military involvement, particularly given the geographic scope of US military assets and the ability of military organisations to ease deployment because of their exemptions to legal restrictions on international action.



3.0.1 Critical national infrastructure


Even if the military are not directly involved in stratospheric aerosol injection related geoengineering activity, they are likely to take a security interest in it. Geoengineering, if carried out, we be classified as Critical Infrastructure, defined as “systems and assets, whether physical or virtual, so vital that the incapacity or destruction of such may have a debilitating impact on the security, economy, public health or safety, environment, or any combination of those matters, across any Federal, State, regional, territorial, or local jurisdiction” (NIPP, 2013, see also Critical Infrastructures Protection Act, 2001).


Currently policy to secure infrastructure was set up in the Homeland Security Act of 2002, Critical Infrastructure Security and Resilience and is outlined in NIPP 2013: and upgraded in Presidential Policy Directive 21 (PPD-21), Partnering for Critical Infrastructure Security and Resilience. It involves managing risks in a partnership between “owners and operators; Federal, State, local, tribal, and territorial governments; regional entities; non-profit organizations; and academia” using an integrated approach to “Identify, deter, detect, disrupt, and prepare for threats and hazards”, reduce vulnerabilities, and mitigate consequences (NIPP 2013, page 1).


The main focus on threats relates to terrorism, pandemics, cyber attacks, extreme weather and accidents or technical failures. These are understood using a traditional “threat, vulnerability, consequences” framework. Within this framework threats relate to “natural or man-made occurrence, individual, entity, or action that has or indicates the potential to harm life, information, operations, the environment, and/or property” (NIPP, 2013 pg. 17). These are then prioritized in relation to how vulnerable infrastructure systems are to them, and what the consequences might be if those vulnerabilities were exploited.


Consequently, assessing the security requirements for geoengineering infrastructure requires assessing vulnerabilities and consequences. In relation to consequences these are large as the termination effect presents a major threat. Once geoengineering was in place for decades, stopping the activity could lead to a rapid increase in global temperatures, which in turn could lead to significant environmental impacts that would threaten not just US economic interests, but the survival of its society (Jones et al 2013). On a consequences ranking, geoengineering would score highly, and would require comprehensive risk management that mapped out and explored vulnerabilities in the elements of the wider technological systems it was embedded in. Moreover, given the systems would have to operate for many hundreds of years, a larger set of environmental and systemic uncertainties and 'unknown unknowns' would likely be explored.


Moving to vulnerabilities, it may be the case that direct vulnerabilities would be no more than those faced by a traditional military facility and could be managed in the same way. Resilience to catastrophic failure could be built in through redundancy, replication, backup facilities etc. It is hard to see how any direct threats could not be managed by organisations that are capable of dealing with the protection of nuclear weapons.


However, geoengineering activity is very vulnerable to counter-measures. For example, if a country disagreed with either geoengineering or the end-points that the climate was being geo-engineered to it could easily disrupt existing programmes. For example, Russia may disagree with India about what temperature rise should be aimed at and both might disagree with the USA. Russia might then disrupt geoengineering efforts by venting methane into the atmosphere from oil and gas deposits, or by releasing greenhouse gases, which could be done in ways that would be potentially difficult to detect. The scope of surveillance to deter, detect and prevent this activity could therefore potentially be extremely large and costly as it would have to cover not just existing political actors but also political actors that may emerge in the future.


The costs of security would rise with the extent to which geoengineering measures were imposed because of failure to agree globally. We have already mentioned the potential for regional tensions about end points, and the need to constrain countermeasures, but the implementation of geoengineering would require either a degree of international agreement or unilateral implementation and imposition. Given the very limited ability of the global community to agree on climate policy, it is not clear that a consensus will emerge. The impacts of geoengineering activity on local weather is extremely poorly understood (Trenberth and Dai, 2007) including on local precipitation patterns (Hegerl and Solomon, 2008; Ferraro, et al 2014). States' activity under conditions of uncertainty will be subject to moral hazard and reaching agreement will be potentially costly. It is unfortunate that a plan to deal with a failure to achieve a global climate policy consensus, itself requires a global climate policy consensus that will be arguably more difficult to achieve.


If global consensus on end points and governance cannot be achieved, questions arise about the extent to which countries can veto activity that will directly influence their climate. Would countries be ignored? Particularly given their ability to use countermeasures. Would geoengineering be imposed on parts of the world without their agreement or in direct opposition to their clearly expressed preferences? If so, the security threats to geoengineering activity would be higher and the scope and intensity of security infrastructure would increase. Implementing geoengineering under such conditions will increase the social and political commitment required, which, in turn, has the potential to generate lockin to costly governance structures and security infrastructure (Rayner et al 2013).



3.0.2 The geography of blame


A key influence on potential threats relates to the number of people, organisations and States that wish to disrupt geoengineering and the intensity of those aims. A key issue that has been often overlooked in

geoengineering debates is how geoengineering might itself change people's feelings towards it. Extreme weather events can be very disruptive, but are currently seen as naturally occurring and therefore outside the moral calculus of blame. However, if the climate is being engineered, then weather may cease to be seen as natural, and instead be seen as the result of deliberate interventions. If this is the case, it becomes blameworthy.


Given it is likely that extreme weather events will continue and possibly increase with climate change, this opens up the risk that any extreme weather event will be seen as a consequence of intentional action by States that engage in geoengineering. This will be the case even if the consequences are unintended. Since the same uncertainty about weather patterns that makes the effectiveness of weather modification techniques very difficult to establish will apply to the calculus of blame, there is no clear baseline for establishing the counter factual outcomes that would have occurred had geoengineering not taken place and indeed that make it impossible to attribute any given extreme weather event to anthropogenic climate change (c.f. Pielke Jr. 2010, chap.7). This raises the potential scenario where every extreme weather event and its consequences are blamed on the States involved in geoengineering activity.


Aggrieved parties that seek revenge on the States involved will find it very difficult to disrupt geoengineering activities directly, as noted earlier, and may therefore vent their anger indirectly. For example, anger could be vented at the citizens or economic assets of the countries involved. The additional costs of protection on a global scale could therefore be very large, very quickly. If climate change ends up generating large impacts on peoples' livelihoods, it is not inconceivable that over the next few hundred years a politics of climate might emerge, that in turn may have violent fringes.


There is an additional concern about the geography of blame, relating to its mismatch with action. When people assign blame they do so within socialized normative frameworks, with blaming activity providing a public display and reaffirmation of those frameworks. Such frameworks rarely match the complexity of the underlying causes. For example, rather than recognize the complexity of systemic technical failures, society seeks scapegoats and blames individuals. Blaming affirms a hidden moral reality behind the appearance of social life and as a result links to trust, normative frameworks, social structures and specific local, temporal concerns. In practice this can link back in a chain to more fundamental causes. For example, a disaster can be attributed to the actions of a local group, but their actions in turn can be attributed to a more powerful and sinister set of forces. This does not necessarily match the underlying causality at work. For example, currently in the Middle East blame is attributed to other groups, who in turn are seen as agents of other powers such as Israel and the USA, rather than other nations that are much more directly involved.


Under such conditions the security consequences of engaging in geoengineering, in a world subject to extreme weather events, for States would be extremely high. Moreover, for some States such as the United States, which are seen to have superior technological capabilities and global influence, that blame may be applied and acted upon, even if the USA does not engage in geoengineering. Put crudely, if the USA decides not to engage in geoengineering and the EU does, the US may well get the blame if things go wrong. Moreover, it may be blamed for the consequences of extreme weather events around the world it had no influence over.


Even if no-one engages in geoengineering there is a significant proportion of the population who will believe it is ongoing anyway (Cairns, 2014b), who often blame the US government, and the sinister hidden organisations they believe are controlling its actions. While these individuals are not part of the current mainstream geoengineering debate, they should not be dismissed. Currently, some 14% of the population by some polls expresses a degree of agreement with the idea that the climate is being covertly manipulated for nefarious ends. It may be unrealistic to assume that these suspicions will not increase if solar geoengineering is introduced.



4. Conclusion: Avoiding Dystopian Futures


Given the very early stages of SRM research, and hence the lack of clarity about its development it is important to highlight the uncertainties involved in any analysis of future impacts. Caveats should be highlighted, and it is logically possible that none of these security concerns will arise. It may be the case that the world will agree on a framework for geoengineering activity and no country, group or individual will dissent. Similarly, the US Congress may accept the deployment of a climate modification system under the control of international organisations and subject to UN control even though they pose a potentially catastrophic threat to the US. Political authorities may decide geoengineering systems are not Critical National Infrastructure, or do not require extensive security oversight. Moreover, there may be global agreement with these actions such that security concerns are minimized. Social science research on blame may be wrong and rising education levels may make the allocation of blame more 'rational'. Under such circumstances scientists can get on with engineering the climate and not worry about the costs of indirect security.


However, given the failures of States to agree on climate policy, the concerns raised about having US military dog training teams under UN control, the stability of existing security frameworks and policy, and the existing concerns about the social distribution of risks and rewards of geoengineering activity, it may be wise to be cautious. In a worst case scenario, where geoengineering is unilaterally deployed without agreement and therefore imposed on an unwilling world that is increasingly paranoid about extreme weather, the security infrastructure required would be substantial. At the extreme it may require a global system of surveillance and extensive interventions to protect soft targets around the world in a political climate where the impact of every hail storm and flood was being blamed on the States perceived to be undertaking geoengineering. The costs of such an infrastructure would not just be measured in percentages of GDP, but also in political terms as they would require substantial changes in political structures and engagements both internationally and at home. In a worst case scenario, global threat suppression would have to be undertaken for centuries, would be likely to be subject to secretive, bureaucratic decision-making under conditions of uncertainty, and could take place in a world subject to paranoia, blame and confrontation over climate outcomes. Such an outcome is clearly not inevitable, but would be very dystopian.


Given these concerns, the widespread assumption that SRM would be undertaken by scientists and its indirect security impacts will be inconsequential is questionable. Similarly, the implicit assumption that achieving agreement over global governance would be easy is questionable, as achieving stable, global agreements about security issues is notoriously difficult. Current experience suggests it may well be impossible, and the deployment of geoengineering would have to be imposed, possibly without the consent of all nations, and almost certainly over the objections of political groups. While the direct security impacts of geoengineering, through its use in military contexts or for the protection of facilities are likely to be slight, the indirect security impacts may well be much larger. Based on a series of assumptions that security policy changes slowly, that agreement on climate outcomes will continue to be difficult, and that geoengineering will make weather events blameworthy, the potential security costs may be large. Any security threats could in theory be suppressed on a global scale, but the political and economic costs of doing this over centuries would be significant.


The currently widespread assumption that solar geoengineering will be undertaken by agreement, by the scientific community, that it will be easily governable and subject to effective democratic oversight on a global scale, and then not have any adverse security consequence, may turn out to be unrealistic. Instead, while it is hard to predict the future, it is hard to avoid the conclusion solar geoengineering is likely to be difficult to implement, raises questions about effective governance (and may well be ungovernable as suggested by Hulme, 2014), and has the potential to have very costly social and economic consequences. These social consequences may well be of such a magnitude as to make SRM untenable as a low cost solution to climate change. In worst case scenarios, they may turn out to be so high as to make SRM it untenable as a policy option."to make it untenable as a policy option.






[1] Briggs, C. M. (2013). Is Geoengineering a National Security Risk? Geo-engineering Our Climate Blog Available at: 8U


[2] Cairns R (2014) Will solar radiation management enhance global security in a changing climate?, CGG Working Paper 16.


[3] Cairns, R (2014b) Climates of Suspicion, CGG Working Paper 9.


[4] Campbell, et al (2007); Campbell, B.K.M. et al., (2007). The Age of Consequences : The Foreign Policy and National Security Implications of Global Climate Change.


[5] Clapper, (2014). Worldwide Threat Assessment of the US Intelligence Community, Washington


[6] CNA (2007). National Security and the Threat of Climate Change, Available at:


[7] CNI (2013)


[8] Eastin, J., Grundmann, R. & Prakash, A., (2011). The two limits debates: _`Limits to Growth'_ and climate change. Futures, 43, pp.16_26.


[9] Edney, K., & Symons, J. (2013). China and the blunt temptations of geo-engineering: the role of solar radiation management in China's strategic response to climate change. The Pacific Review, (February 2014), 1_26. doi:10.1080/09512748.2013.807865


[10] Ferraro, A.J., Highwood, E.J. & Charlton-Perez, A.J., 2014.


Weakened tropical circulation and reduced precipitation in response to geoengineering. Environmental Research Letters, 9(1), p.014001. Available at: [Accessed January 10, 2014].


[11] Fleming, J., (2010). Fixing the Sky, New York: Columbia University Press.


[12] Fleming, J., (2006). The pathological history of weather and climate modification : Three cycles of promise and hype. Historical Studies in the Physical and Biological Sciences, 37(1), pp.3_25.


[13] Gray C S (2005), Another Bloody Century, Phoenix Books.


[14] Havens, B.S., (1952). History of Project Cirrus (Report No. RL 758), New York: General Electric Research Laboratory.


[15] Hegerl, G.C. & Solomon, S., (2009). Risks of Climate Engineering. Science, 325, pp.955-956.


[16] Homer-Dixon, T., 1991. On the Threshold: Environmental Changes as Causes of Acute Conflict. International Security, 16(2), pp.76-116.


[17] Hulme, M. (2014). Can Science Fix Climate Change?: A Case Against Climate Engineering. Oxford, UK: Polity Press


[18] Jones, A., et al. (2013). The impact of abrupt suspension of solar radiation management (termination effect) in experiment G2 of the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research: Atmospheres, 118 (17), 9743-9752


[19] Kaldor, M 1999, New and Old Wars. Organized Violence in a Global Era. Stanford


[20] MacKerron, G (2014) Costs and economics of geoengineering, CGG Working Paper 13.


[21] Molas-Gallart and Robinson, 1997


[22] NIPP 2013, National Infrastructure Protection Plan, Department for Homeland Security, Washington. Available at:


[23] NRC, 2003. Critical Issues in Weather Modification Research, Washington D.C.


[24] Pielke, R.A., 2010. The climate fix: what scientists and politicians

won't tell you about global warming, Basic Books.


[25] Rayner, S. et al., 2013. The Oxford Principles. Climatic Change. Available at: [Accessed March 7, 2013].


[26] Trenberth, K.E. & Dai, A., 2007. Effects of Mount Pinatubo vol-canic eruption on the hydrological cycle as an analog of geoengi-neering. Geophysical Research Letters, 34(15), p.L15702. Available at: [Accessed January 23, 2014].


[27] UN 2007 UN Council, Letter date 5 April 2007 from the Permanent Representative of the United Kingdom of Great Britain and Northern Ireland to the United Nations addressed to the President of the Security Council;


[28] UN, 2011. UN Security Council 6587th Meeting, New York.


[29] United States Department of Defense, 2014. Quadrennial Defense Review 2014, Washington D.C.


[30] US Department of Homeland Security, 2008. Hurricane Modification Workshop Report, Boulder Colorado.


[31] Willoughby, H.E., Clos, J.A. & Shoreibah, G., 1982. Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. Journal of the Atmospheric Sciences, 39, pp.395 _ 411.


[32] Xueliang, G. U. O. (2009). Advances in Weather Modification from 1997 to 2007 in China. Advances in Atmospheric Sciences, 26(2), 240_252.





Ein künstliches Klima durch SRM Geo-Engineering



 Sogenannte "Chemtrails"     sind SRM Geoengineering-   Forschungs-Experimente


 Illegale Feldversuche der   SRM Technik, weltweit.



Illegale militärische und zivile GE-Forschungen finden in einer rechtlichen Grauzone statt.


Feldversuche oder illegale SRM Interventionen wurden nie in nur einem einzigen Land der Welt,  je durch ein Parlament gebracht, deshalb sind sie nicht legalisiert und finden in einer rechtlichen Grauzone der Forschung statt. Regierungen wissen genau, dass sie diese Risiko-Forschung, die absichtliche Veränderung mit dem Wetter nie durch die Parlamente bekommen würden..


HAARP - Die Büchse der Pandora in militärischen Händen



Illegale zivile und militärische SRM Experimente finden 7 Tage die Woche (nonstop) rund um die Uhr statt. 


Auch Nachts - trotz Nacht-



Geo-Engineering Forschung


Wissenschaftler planen 10 bis 100 Megatonnen hoch toxischer Materialien wie Aluminium, synthetischen Nanopartikeln jedes Jahr in unserer Atmosphäre auszubringen.


Die Mengenangaben von SRM Materialien werden neuerdings fast immer in Teragramm berechnet. 


  1 Teragramm  = 1 Megatonne

  1 Megatonne  = 1 Million Tonnen



SAI = Stratosphärische

Aerosol Injektionen mit toxischen Materialen wie:


  • Aluminiumoxide
  • Black Carbon 
  • Zinkoxid 
  • Siliciumkarbit
  • Diamant
  • Bariumtitanat
  • Bariumsalze
  • Strontium
  • Sulfate
  • Schwefelsäure 
  • Schwefelwasserstoff
  • Carbonylsulfid
  • Ruß-Aerosole
  • Schwefeldioxid
  • Dimethylsulfit
  • Titan
  • Lithium
  • Lithiumsalze
  • Kohlenstoff Flugasche 
  • Kalkstaub
  • Titandioxid
  • Natriumchlorid
  • Meersalz 
  • Calciumcarbonat
  • Siliciumdioxid
  • Silicium
  • Bismuttriiodid (BiI3
  • Polymere
  • Polymorph von TiO2
  • Dialektrika:
  • Sulfate
  • Halogenide und
  • Kohlenstoffverbindungen
  • Halbleiter:
  • Indiumantimonid (InSb)
  • Bleitellunid (PbTe)
  • Indiumarsen (InAs)
  • Carbonat Aersole
  • Silberjodit, Silberiodit
  • Trockeneis (gefrorenes Kohlendioxid)
  • Hygroskopische Materialien wie Salz,
  • Silanox
  • Cilicagel, Kieselgel
  • Kieselsäure 
  • Syloid65 (Subventionierte Brennstoffmischungen =
  • Chemtrail Chemikalien Mix) aus Patentunterlagen
  • Silberiodit-Kaliumiodit-Komplex
  • Lithium-Silberiodit-Komplex
  • Militär verteilt: Glasfaser-Spreu






Der Wissenschaftler David Keith, der die Geo-Ingenieure Ken Caldeira und Alan Robock in ihrer Arbeit unterstütztsagte auf einem Geo-Engineering - Seminar am 20. Februar 2010, dass sie beschlossen hätten, ihre stratosphärischen Aerosol-Modelle von Schwefel auf Aluminium umzustellen


Niemand auf der ganzen Welt , zumindest keiner der staatlichen Medien berichtete von diesem wichtigen Ereignis.





April 2016 

Aerosol Experiments Using Lithium and Psychoactive Drugs Over Oregon.



SKYGUARDS: Petition an das Europäische Parlament - 2013



Wir haben keine Zeit zu verlieren!




Klage gegen Geo-Engineering und Klimapolitik 


Der Rechtsweg ist vielleicht die einzige Hoffnung, Geo-Engineering-Programme zum Anhalten zu bewegen. Paris und andere Klimaabkommen schaffen Ziele von rechtlich international verbindlichen Vereinbarungen. Wenn sie erfolgreich sind, werden höchstwahrscheinlich SRM-Programme ohne ein ordentliches Gerichtsverfahren legalisiert. Wenn das geschieht, wird das unsere Fähigkeit Geoengineering zu verhindern und jede Form von rechtlichen Maßnahmen zu ergreifen stark behindern.


Ziel dieser Phase ist es, Mittel zu beschaffen um eine US- Klage vorzubereiten. Der Hauptanwalt Wille Tierarzt wählt qualifizierte Juristen aus dem ganzen Land aus, um sicher zu stellen, dass wir Top-Talente sichern, die wir für unser langfristiges Ziel einsetzen.



Die Fakten sind, dass seit einem Jahrzehnt am Himmel illegale Wetter -Änderungs-Programme stattfinden, unter Einsatz des Militärs im Rahmen der NATO, ohne Wissen oder Einwilligung der Bevölkerung..

EU-Konferenz und Petition über Wettermodifizierung und Geoengineering in Verbindung mit HAARP Technologien


Die Zeit ist gekommen. Anonymous wird nicht länger zusehen. Am 23. April werden wir weltweit gegen Chemtrails und Geoengineering friedlich demonstrieren.


Anonymous gegen Geoengineering 



Wir waren die allerletzten Zeit Zeugen eines normalen natürlichen blauen Himmels.





Heute ist der Himmel nicht mehr blau, sondern eher rot oder grau. 



Metapedia –

Die alternative Enzyklopädie




Die neue Enzyklopädie Chemtrails GeoEngineering HAARP






SRM - Geoengineering

Aluminium anstatt Schwefeloxid


Im Zuge der American Association for the Advancement of Science (AAAS) Conference 2010, San Diego am 20. Februar 2010, wurde vom kanadischen Geoingenieur David W. Keith (University of Calgary) vorgeschlagen, Aluminium anstatt Schwefeldioxid zu verwenden. Begründet wurde dieser Vorschlag mit 1) einem 4-fach größeren Strahlungsantrieb 2) einem ca. 16-fach geringeren Gerinnungsfaktor. Derselbe Albedoeffekt könnte so mit viel geringeren Mengen Aluminium, anstatt Schwefel, bewerkstelligt werden. [13]


Mehr Beweise als dieses Video braucht man wohl nicht. >>> Aerosol-Injektionen


Das "Geo-Engineering" Klima-Forschungsprogramm der USA wurde direkt dem Weißen Haus unterstellt,

bzw. dort dem White House Office of Science and Technology Policy (OSTP) zugewiesen. 



Diese Empfehlung lassen bereits das Konfliktpotential dieser GE-Forschung erahnen.






In den USA fällt Geo-Engineering unter Sicherheitspolitik und Verteidigungspolitik: 



Geo-Engineering als Sicherheitspolitische Maßnahme..


Ein Bericht der NASA merkt an, eine Katastrophensituation könnte die Entscheidung über SRM maßgeblich erleichtern, dann würden politische und ökonomische Einwände irrelevant sein. Die Abschirmung von Sonnenlicht durch SRM Maßnahmen wäre dann die letzte Möglichkeit, um einen katastrophalen Klimawandel abzuwenden.


maßgeblich erleichtern..????


Nach einer Katastrophensituation sind diese ohnehin illegalen geheimen militärischen SRM Programme wohl noch leichter durch die Parlamente zu bringen unter dem Vorwand der zivilen GE-Forschung. 




Der US-Geheimdienst CIA finanziert mit 630.000 $ für die Jahre   2013/14 

Geoengineering-Studien. Diese Studie wird u.a. auch von zwei anderen staatlichen Stellen NASA und NOAA finanziert. 




Um möglichst keine Spuren zu hinterlassen.. sind wirklich restlos alle Links im Netz entfernt worden. 






Es existieren viele Vorschläge zur technologischen Umsetzung des stratosphärischen Aerosol- Schildes.


Ein Patent aus dem Jahr 1991 behandelt das Einbringen von Aerosolen in die Stratosphäre

(Chang 1991).


Ein neueres Patent behandelt ein Verfahren, in dem Treibstoffzusätze in Verkehrsflugzeugen zum Ausbringen reflektierender Substanzen genutzt werden sollen (Hucko 2009).




Die von Microsoft finanzierte Firma Intellectual Ventures fördert die Entwick­lung eines „Stratoshield“ genannten Verfahrens, bei dem die Aerosolerzeugung in der Strato­sphäre über einen von einem Ballon getragenen Schlauch vom Erdboden aus bewirkt werden soll.


CE-Technologien wirken entweder symptomatisch oder ursächlich


Symptomatisch wirkend: 

Modifikation durch SRM-Geoengineering- Aerosole in der Stratosphäre


Ursächlich wirkend: 

Reduktion der CO2 Konzentration (CDR) 


Effekte verschiedener Wolkentypen


Dicke, tief hängende Wolken reflektieren das Sonnenlicht besonders gut und beeinflussen kaum die Energie, die von der Erde als langwellige Infrarotstrahlung abgegeben wird. Hohe Wolken sind dagegen kälter und meist dünner. Sie lassen daher mehr Sonnenlicht durch, dafür speichern sie anteilig mehr von der langwelligen, abgestrahlten Erdenergie. Um die Erde abzukühlen, sind daher tiefe Wolken das Ziel der Geoingenieure.



Zirruswolken wirken also generell erwärmend (Lee et al. 2009). Werden diese Wolken künstlich aufgelöst oder verändert, so wird sich in der Regel ein kühlender Effekt ergeben.


Nach einem Vorschlag von Mitchell et al.  (2009) könnte dies durch ein Einsäen von effizienten Eiskeimen bei der Wolkenbildung geschehen.



Eiskeime werden nur in sehr geringer Menge benötigt und könnten beispielsweise durch Verkehrs-Flugzeuge an geeigneten Orten ausgebracht werden. Die benötigten Materialmengen liegen dabei im Bereich von einigen kg pro Flug.



Die RQ-4 Global Hawk fliegt etwa in 20 Kilometer Höhe ohne Pilot.

1 - 1,5  Tonnen Nutzlast.


Instead of visualizing a jet full of people, a jet full of poison.



Das Militär hat bereits mehr Flugzeuge als für dieses Geo-Engineering-Szenario erforderlich wären, hergestellt. Da der Klimawandel eine wichtige Frage der nationalen Sicherheit ist [Schwartz und Randall, 2003], könnte das Militär für die Durchführung dieser Mission mit bestehenden Flugzeugen zu minimalen Zusatzkosten sein.




Die künstliche Klima-Kontrolle durch GE


Dies sind die Ausbringung von Aerosolpartikeln in der Stratosphäre, sowie die Erhöhung der Wolkenhelligkeit in der Troposphäre mithilfe von künstlichen Kondensationskeimen.




Brisanz von Climate Engineering  (DFG)


Climate-Engineering wird bei Klimakonferenzen (z.B. auf dem Weltklimagipfel in Doha) zunehmend diskutiert. Da die Maßnahmen für die angestrebten Klimaziele bisher nicht greifen, wird Climate Engineering als alternative Hilfe in Betracht gezogen.





Umweltaktivistin und Trägerin des alternativen Nobelpreises Dr. Rosalie Bertell, berichtet in Ihrem Buch »Kriegswaffe Planet Erde« über die Folgewirkungen und Auswirkungen diverser (Kriegs-) Waffen..


Bild anklicken
Bild anklicken


Dieses Buch ist ein Muss für jeden Bürger auf diesem Planeten.


..Indessen gehen die Militärs ja selbst gar nicht davon aus, dass es überhaupt einen Klimawandel gibt, wie wir aus Bertell´s Buch wissen (Hamilton in Bertell 2011).


Sondern das, was wir als Klimawandel bezeichnen, sind die Wirkungen der immer mehr zunehmenden


und Eingriffe ins Erdgeschehen mittels Geoengineering, insbesondere durch die HAARP-ähnlichen Anlagen, die es inzwischen in aller Welt gibt..


Bild anklicken
Bild anklicken



Why in the World are they spraying 


Durch die bahnbrechenden Filme von Michael J. Murphy "What in the World Are They Spraying?" und "Why in the world are the Spraying?" wurden Millionen Menschen die Zerstörung durch SRM-Geoengineering-Projekte vor Augen geführt. Seitdem bilden sich weltweit Bewegungen gegen dieses Verbrechen.



Die Facebook Gruppe Global-Skywatch hat weltweit inzwischen schon über 90.000 Mitglieder und es werden immer mehr Menschen, die die Wahrheit erkennen und die "gebetsmühlenartig" verbreiteten Lügengeschichten der Regierung und Behörden in Bezug zur GE-Forschung zu Recht völlig hinterfragen. 


Bild anklicken: Untertitel in deutscher Sprache
Bild anklicken: Untertitel in deutscher Sprache





SRM Programme - Ausbringung durch Flugzeuge 




Die Frage die bleibt, ist die Antwort auf  Stratosphärische Aerosol- Injektions- Programme und die tägliche Umweltzer-störung auf unserem Planeten“




Die Arbeit von Brovkin et al. (2009) zeigt für ein Emissionsszenario ohne Emissionskontrolle, dass der Einsatz von RM für mehrere 1000 Jahre fortgesetzt werden muss, je nachdem wie vollständig der Treibhausgas-induzierte Strahlungsantrieb kompensiert werden soll.




Falls sich die Befürchtung bewahrheitet, dass eine Unterbrechung von RM-Maßnahmen zu abruptem Klimawandel führt, kann sich durch den CE-Einsatz ein Lock-in-Effekt ergeben. Die hohen gesamtwirtschaftlichen Kosten dieses abrupten Klimawandels würden sozusagen eine Weiterführung der RM-Maßnahmen erzwingen.







Neben den Studien von CSEPP (1992) und Robock et al. (2009), ist insbesondere die aktuelle Studie von McClellan et al. (2010) hervorzuheben. Für die Ausbringung mit Flugsystemen wird angenommen, dass das Material mit einer Rate von 0,03 kg/m freigesetzt wird. Es werden Ausbringungshöhen von 13 bis 30 km untersucht.





Bestehende kleine Düsenjäger, wie der F-15C Eagle, sind in der Lage in der unteren Stratosphäre in den Tropen zu fliegen, während in der Arktis größere Flugzeuge wie die KC-135 Stratotanker oder KC-10 Extender in der Lage sind, die gewünschten Höhen zu erreichen.


SRM Protest-Märsche gleichzeitig in circa 150 Städten - weltweit.


Geoengineering-Forschung als Plan B für eine weltweit verfehlte Klimapolik. 


Bild anklicken:
Bild anklicken:


Staaten führen illegale Wetter-Änderungs-Techniken als globales Experiment gegen den Klimawandel durch, geregelt über die UN, ausgeführt durch die NATO, mit militärischen Flugzeugen werden jährlich 10-20 Millionen Tonnen hoch giftiger Substanzen in den Himmel gesprüht..


Giftige Substanzen, wie Aluminium, Barium, Strontium, die unsere Böden verseuchen und die auch auf Dauer den ph-Wert des Bodens deutlich verändern würden. Es sind giftige Substanzen, wie Schwefel, welches die Ozonschicht systematisch zerstören würde. 






Weltweite  Protestmärsche gegen globale Geoengineering Experimente finden am 25. April 2015 in all diesen Städten gleichzeitig statt:




AUSTRALIEN - (Adelaide)

AUSTRALIEN - (Albury-Wodonga)

AUSTRALIEN - (Bendigo)

AUSTRALIEN - (Brisbane)

AUSTRALIEN - (Byron Bay)


AUSTRALIEN - (Canberra)


AUSTRALIEN - (Gold Coast)


AUSTRALIEN - (Melbourne)

AUSTRALIEN - (Newcastle)

AUSTRALIEN - (New South Wales, Byron Bay)


AUSTRALIEN - (Port Macquarie)

AUSTRALIEN - (South Coast NSW)

AUSTRALIEN - (South East Qeensland)

AUSTRALIEN - (Sunshine Coast)


AUSTRALIEN - (Tasmania)

BELGIEN - (Brüssel)

BELGIEN - (Brüssel Group)

BRASILIEN - (Curitiba)

BRASILIEN - (Porto Allegre)


Kanada - Alberta - (Calgary)

Kanada - Alberta - (Edmonton)

Kanada - Alberta - (Fort Saskatchewan)

Kanada - British Columbia - (Vancouver Group)

Kanada - British Columbia - (Victoria)

Kanada - Manitobak - (Winnipeg)

Kanada – Neufundland

Kanada - Ontario - (Barrie)

Kanada - Ontario - (Cambridge)

Kanada - Ontario - (Hamilton)

Kanada - Ontario - (London)

Kanada - Ontario - (Toronto)

Kanada - Ontario  - (Ottawa)

Kanada - Ontario - (Windsor)

Kanada - Québec - (Montreal)

KOLUMBIEN - (Medellin)


KROATIEN - (Zagreb)

DÄNEMARK - (Aalborg)

DÄNEMARK - (Kopenhagen)

DÄNEMARK - (Odense)

ESTLAND - (Tallinn)

Ägypten (Alexandria)

FINNLAND - (Helsinki)




DEUTSCHLAND - (Düsseldorf)




Ungarn (Budapest)

IRLAND - (Cork City)

IRLAND - (Galway)

ITALIEN - (Milano)

Italien - Sardinien - (Cagliari)

MAROKKO - (Rabat)


NIEDERLANDE - (Groningen)

NEUSEELAND - (Auckland)

NEUSEELAND - (Christchurch)

NEUSEELAND - (Hamilton)


NEUSEELAND - (New Plymouth)



NEUSEELAND - (Wellington)

NEUSEELAND - (Whangerei)




PORTUGAL - (Lissabon)

SERBIEN - (Glavni Gradovi)



SPANIEN - (Barcelona)

SPANIEN - (La Coruna)

SPANIEN - (Ibiza)

SPANIEN - (Murcia)

SPANIEN - (San Juan - Alicante)

SCHWEDEN - (Gothenburg)

SCHWEDEN - (Stockholm)

SCHWEIZ - (Bern)

SCHWEIZ - (Genf)

SCHWEIZ - (Zürich)

UK - ENGLAND - (London)

UK - ISLE OF MAN - (Douglas)

UK - Lancashir - (Burnley)

UK - Scotland - (Glasgow)

UK - Cornwall - (Truro)

USA - Alaska - (Anchorage)

USA - Arizona - (Flagstaff)

USA - Arizona - (Tucson)

USA - Arkansas - (Hot Springs)

USA - Kalifornien - (Hemet)

USA - CALIFORINA - (Los Angeles)

USA - Kalifornien - (Redding)

USA - Kalifornien - (Sacramento)

USA - Kalifornien - (San Diego)

USA - Kalifornien - (Santa Cruz)

USA - Kalifornien - (San Francisco)

USA - Kalifornien - Orange County - (Newport Beach)

USA - Colorado - (Denver)

USA - Connecticut - (New Haven)

USA - Florida - (Boca Raton)

USA - Florida - (Cocoa Beach)

USA - Florida - (Miami)

USA - Florida - (Tampa)

USA - Georgia - (Gainesville)

USA - Illinois - (Chicago)

USA - Hawaii - (Maui)

USA - Iowa - (Davenport)

USA - Kentucky - (Louisville)

USA - LOUISIANA - (New Orleans)

USA - Maine - (Auburn)

USA - Maryland - (Easton)

USA - Massachusetts - (Worcester)

USA - Minnesota - (St. Paul)

USA - Missouri - (St. Louis)

USA - Montana - (Missoula)

USA - NEVADA - (Black Rock City)

USA - NEVADA - (Las Vegas)

USA - NEVADA - (Reno)

USA - New Jersey - (Red Bank)

USA - New Mexico (Northern)

USA - NEW YORK - (Ithaca)

USA - NEW YORK - (Long Island)

USA - NEW YORK - (New York City)

USA - NORTH CAROLINA - (Asheville)

USA - NORTH CAROLINA - (Charlotte)

USA - NORTH CAROLINA - (Greensboro)

USA - Oregon - (Ashland)

USA - Oregon - (Portland)

USA - Pennsylvania - (Harrisburg)

USA - Pennsylvania - (Pittsburgh)

USA - Pennsylvania - (West Chester)

USA - Pennsylvania - (Wilkes - Barre)

USA - SOUTH CAROLINA - (Charleston)

USA - Tennessee - (Memphis)

USA - Texas - (Austin)

USA - Texas - (Dallas / Metroplex)

USA - Texas - (Houston)

USA - Texas - (San Antonio)

USA - Vermont - (Burlington)

USA - Virginia - (Richmond)

USA - Virginia - (Virginia Beach)

USA - WASHINGTON - (Seattle)

USA - Wisconsin - (Milwaukee)


Bild anklickem: Holger Strom Webseite
Bild anklickem: Holger Strom Webseite


Der Film zeigt eindrucksvolle Beispiele, beginnend beim Einsatz der Atombomben mit ihren schrecklichen Auswirkungen bis hin zu den gesundheitszerstörenden, ja tödlichen Hinterlassenschaften der Atomenergienutzung durch die Energiewirtschaft. Eine besondere Stärke des Films liegt in den Aussagen zahlreicher, unabhängiger Fachleute. Sie erläutern mit ihrem in Jahrzehnten eigener Forschung und Erfahrung gesammelten Wissen Sachverhalte und Zusammenhänge, welche die Befürworter und Nutznießer der Atomtechnologie in Politik, Wirtschaft und Militärwesen gerne im Verborgenen halten wollen.


Prof. Dr. med. Dr. h. c. Edmund Lengfelder



Nicht viel anders gehen Politiker/ Abgeordnete des Deutschen Bundestages mit der hoch toxischen riskanten SRM Geoengineering-Forschung um, um diese riskante Forschung durch die Parlamente zu bekommen.


Es wird mit gefährlichen Halbwissen und Halbwahrheiten gearbeitet. Sie werden Risiken vertuschen, verdrehen und diese Experimente als das einzig Richtige gegen den drohenden Klimawandel verkaufen. Chemtrails sind Stratosphärische Aerosol Injektionen, die  illegal auf globaler Ebene stattfinden, ohne jeglichen Parlament-Beschluss der beteiligten Regierungen.


Geoengineering-Projekte einmal begonnen, sollen für Jahrtausende fortgeführt werden - ohne Unterbrechung (auch bei finanziellen Engpässen oder sonstigen Unruhen) um nicht einen Umkehreffekt  auszulösen.


Das erzählt Ihnen die Regierung natürlich nicht, um diese illegale hochgefährliche RM Forschung nur ansatzweise durch die Parlamente zu bringen.


Spätestens seit dem Atommüll-Skandal mit dem Forschungs-Projekt ASSE wissen wir Bürger/Innen, wie Politik und Wissenschaft mit Forschungs-Risiken umgehen.. Diese Gefahren und Risiken werden dann den Bürgern einfach verschwiegen. 



Am 30. September 2012 ist eine neue Internetplattform zu Climate Engineering online gegangen  


Die Plattform enthält alle neuen Infos -Publikationen, Veranstaltungen etc. zu Climate-Engineering.





Gezielte Eingriffe in das Klima?

Eine Bestandsaufnahme der Debatte zu Climate Engineering

Kieler Earth Institute



Climate Engineering:

Ethische Aspekte

Karlsruher Institut für Technologie



Climate Engineering:

Chancen und Risiken einer Beeinflussung der Erderwärmung. Naturwissenschaftliche und technische Aspekte

Leibniz-Institut für Troposphärenforschung, Leipzig


Climate Engineering:

Wirtschaftliche Aspekte 

Kiel Earth Institute



Climate Engineering:

Risikowahrnehmung, gesellschaftliche Risikodiskurse und Optionen der Öffentlichkeitsbeteiligung

Dialogik Stuttgart



Climate Engineering:

Instrumente und Institutionen des internationalen Rechts

Universität Trier



Climate Engineering:

Internationale Beziehungen und politische Regulierung

Wissenschaftszentrum Berlin für Sozialforschung




Illegale Atmosphären-Experimente finden in Deutschland  seit  2012 „täglich“ am Himmel statt.


Chemtrails  -  Verschwörung am Himmel ? Wettermanipulation unter den Augen der Öffentlichkeit


Auszug aus dem Buch: 


Ich behaupte, dass in etwa 2 bis 3 mal pro Woche, ungefähr ein halbes Dutzend  von frühmorgens bis spätabends in einer Art und Weise Wien überfliegen, die logisch nicht erklärbar ist. Diese Maschinen führen über dem Stadtgebiet manchmal auffällige Steig- und Sinkflüge durch , sie fliegen Bögen und sie drehen abrupt ab. Und sie hinterlassen überall ihre dauerhaft beständigen Kondensstreifen, welche auch ich Chemtrails nenne. Sie verschleiern an manchen Tagen ganz Wien und rundherum am Horizont ist strahlend blauer ...
Hier in diesem Buch  aus dem Jahr 2005 werden die anfänglichen stratosphärischen SRM-Experimente am Himmel beschrieben... inzwischen fliegen die Chemie-Bomber ja 24 h Nonstop, rund um die Uhr.





Weather Modification Patente


Umfangreiche Liste der Patente











Von Pat Mooney - Er ist Gründer und Geschäftsführer der kanadischen Umweltschutzorganisation ETC Group in Ottawa.


Im Jahr 1975 tat sich der US-Geheimdienst CIA mit Newsweek zusammen und warnte vor globaler Abkühlung. Im selben Jahr wiesen britische Wissenschaftler die Existenz eines Lochs in der Ozonschicht über der Antarktis nach und die UN-Vollversammlung befasste sich mit identischen Anträgen der Sowjetunion und der USA für ein Verbot von Klimamanipulationen, die militärischen Zwecken dienen. Dreißig Jahre später redeten alle - auch der US-Präsident über globale Erwärmung. 


Wissenschaftler warnten, der Temperaturanstieg über dem arktischen Eis  und im sibirischen Permafrost könnte in die Klimakatastrophe führen, und der US-Senat erklärte sich bereit , eine Vorlage zu prüfen, mit der Eingriffe in das Klima erlaubt werden sollten. 


Geo-Engineering ist heute Realität. Seit dem Debakel von Kopenhagen bemüht sich die große Politik zusammen mit ein paar Milliardären verstärkt darum, großtechnische Szenarien zu prüfen und die entsprechenden Experimente durchzuführen.


Seit Anfang 2009 überbieten sich die Medien mit Geschichten über Geoengineering als "Plan B". Wissenschaftliche Institute und Nobelpreisträger legen Berichte und Anträge vor, um die Politik zur Finanzierung von Feldversuchen zu bewegen. Im britischem Parlament wie im US-Kongress haben die Anhörungen schon begonnen. Anfang 2010 berichteten Journalisten, Bill Gates investiere privat in Geoengineering-Forschung und werde bei Geoengineering-Patenten zur Senkung der Meerestemperatur und zur Steuerung von Hurrikanen sogar als Miterfinder genannt. Unterdesssen hat Sir Richard Branson - Gründer und Besitzer der Fluglinie Virgin Air - verkündet, er habe eine Kommandozentrale für den Klimakrieg eingerichtet und sei für alle klimatechnischen Optionen offen. Zuvor hatte er 25 Millionen Dollar für eine Technik ausgesetzt, mit der sich die Stratosphäre reinigen lässt. 


Einige der reichsten Männer der Welt (z.B. Richard Branson und Bill Gates ) und die mächtigsten Konzerne (z.B. Shell , Boeing ) werden immer beteiligt.


Geoengineering Karte - ETC Group


ETC Group veröffentlicht eine Weltkarte über Geoengineering-Experimente, die groß angelegte Manipulation des Klimas unserer Erde.  Zwar gibt es keine vollständige Aufzeichnung von Wetter und Klima-Projekten in Dutzenden von Ländern, diese Karte ist aber der erste Versuch, um den expandierenden Umfang der Forschungs-Experimente zu dokumentieren. 


Fast 300 Geo-Engineering-Projekte / Experimente sind auf der Karte vertreten, die zu den verschiedenen Arten von Klima-Änderungs-Technologien gehören.

Einfach anklicken und vergrößern..
Einfach anklicken und vergrößern..


Aus der Sicht der reichen Länder (und ihrer Unternehmen) erscheint Geoengineering einfach perfekt. Es ist machbar. Es ist (relativ) billig. Und es erlaubt der Industrie, den Umbau unserer Wirtschaft und Produktionsweise für überflüssig zu erklären.


Das wichtigste aber ist: Geoengineering braucht keinerlei internationale Übereinkunft. Länder, Unternehmen, ja sogar superreiche Geo-Piraten können es auf eigene Faust durchziehen. Eine bescheidene >Koalition der Willigen< genügt vollauf, und eine Handvoll Akteure kann den Planeten nach Belieben umbauen.


Damit wir es nicht vergessen:


Seit 1945  führten die USA, die UdSSR, England, Frankreich und später auch China mehr als 2000 Atomtests durch – über und unter der Erde und ohne Rücksicht auf die zu erwartenden Auswirkungen auf Gesundheit und Umwelt weltweit. Niemand wurde um Erlaubnis gefragt. Wenn das Weltklima zu kippen droht, werden sie da wirklich vor einseitigen Entscheidungen zurückschrecken? 




Warum ist Geo-Engineering nicht akzeptabel..?


SRM Geoengineering kann nicht im Labor getestet werden: Es ist keine experimentelle Labor-Phase möglich, um einen spürbaren Einfluss auf das Klima zu haben. Geo-Engineering muss massiv eingesetzt werden.


Experimente oder Feldversuche entsprechen tatsächlich den Einsatz in der realen Welt, da kleine Tests nicht die Daten auf Klimaeffekte liefern.


Auswirkungen für die Menschen und die biologische Vielfalt würden wahrscheinlich sofort massiv und möglicherweise irreversibel sein.





Hände weg von Mutter Erde (HOME) ist eine weltweite Kampagne, um unserem kostbaren Planeten Erde, gegen die Bedrohung durch Geo-Engineering-Experimente zu verteidigen. Gehen Sie mit uns, um eine klare Botschaft an die Geo-Ingenieure und die Regierungen weltweit zu senden, dass unsere Erde kein ein Labor ist.



Liste der (SRM) Geoengineering-Forschung

Hier anklicken:
Hier anklicken: research funding 10-9-13.xls


Weltweite Liste der Geoengineering-Forschung SRM Forschungs Länder: 


Großbritannien, Vereinigte Staaten Amerika, Deutschland, Frankreich, Norwegen, Finnland, Österreich und Japan.



In "NEXT BANG!" beschreibt Pat Money neue Risikotechnologien, die heute von Wissenschaftlern, Politikern und mächtigen Finanziers aktiv für den kommerziellen Einsatz vorbereitet werden:


Geo-Engineering, Nanotechnologie, oder die künstliche >Verbesserung< des menschlichen Körpers.


"Die  Brisanz des Buches liegt darin, dass es zeigt, wie die Technologien, die unsere Zukunft bestimmen könnten, heute zum großflächigen Einsatz vorbereitet werden – und das weitgehend unbemerkt von der Öffentlichkeit. Atomkraft, toxische Chemikalien oder genmanipulierte Organismen konnten deshalb nicht durch demokratische Entscheidungen verhindert werden, weil hinter ihnen bereits eine zu große ökonomische und politische Macht stand, als ihre Risiken vielen Menschen erst bewusst wurden.


Deshalb dürfen wir die Diskussion über Geoengineering, Nanotechnologie, synthetische Biologie  und die anderen neuen Risikotechnologien nicht länger den selbsternannten Experten überlassen. Die Entscheidungen über ihren künftigen Einsatz fallen jetzt - es ist eine Frage der Demokratie, dass wir alle dabei mitreden."


Ole von UexküllDirektor der Right Livelihood Award Foundation, die den Alternativen Nobelpreis vergibt



Vanishing of the Bees - No Bees, No Food !


Verschwinden der Bienen  - Keine Bienen, kein Essen !






Solar Radiation Management = SRM

Es ist zu beachten, dass SRM Maßnahmen zwar auf kurzer Zeitskala wirksam werden können, die Dauer ihres Einsatzes aber an der Lebensdauer des CO-2 gebunden ist, welches mehrere Tausend Jahre beträgt.


CDR- Maßnahmen hingegen müssten über einen sehr langen Zeitraum (viele Jahrzehnte) aufgebaut werden, ihr Einsatz könnte allerdings beendet werden, sobald die CO2 Konzentration wieder auf ein akzeptables Niveau gesenkt ist. Entsprechende Anstrengungen vorausgesetzt, könnte dies bereits nach einigen Hundert Jahren erreicht sein.


CDR Maßnahmen: sind relativ teuer und arbeiten viel zu langsam. Bis sie wirken würden, vergehen viele Jahrzehnte


Solar Radiation Management SRM Maßnahmen: billig.. und schnell..



Quelle: Institut für Technikfolgenabschätzung






Solar Radiation Management = SRM


Ironie der Geoengineering Forschung:


Ein früherer SRM Abbruch hätte einen abrupten sehr heftigen Klimawandel zur Folge, den wir in dieser Schnelligkeit und heftigen Form nie ohne diese SRM Maßnahmen gehabt hätten. 


Das, was Regierungen mit den globalen GEO-ENGINEERING-INTERVENTIONEN verhindern wollten, genau das wären dann die globalen Folgeschäden bei der frühzeitigen Beendigung der SRM Forschungs-Interventionen.


Wenn sie diese hoch giftigen SAI - Programme  aus wichtigen Gründen vorher abbrechen müssten, droht uns ein abrupter Klimawandel, der ohne diese GE-Programme nie dagewesen wäre. 


Das bezeichne ich doch mal  als wahre  reale Satire..