Exclusive Rights to Saving the Planet: The Patenting of Geoengineering Inventions


By Anthony E. Chavez*


We will not be able to curtail greenhouse-gas emissions quickly enough to avoid significant climate change. Thus, we should anticipate that society will consider implementing climate engineering, either to avert a climate catastrophe or to reduce atmospheric carbon. Although geoengineering research is still in its infancy, in recent years the number of geoengineering patents and patent applications has increased dramatically. Because of the importance of these technologies to society’s future, the United States needs to ensure that these patents do not deter innovation or prevent these technologies from being available for implementation. Specifically, the United States should develop unique procedures to approve these applications and form a geoengineering patent pool that will facilitate both innovation and accessibility.





1 The Fifth Assessment Report of the United Nations’ Intergovernmental Panel on Climate Change warns that the planet is rapidly reaching a dangerous level of warming.1 Furthermore, it reports that much of the carbon dioxide causing this warming will remain in the atmosphere for a millennium.2 Many scientists have urged studying geoengineering as a means to avert a climate emergency or to reduce the level of CO2 in the atmosphere. Some have begun researching climate-engineering methods and have patented their inventions.


2 Over the past five years, the number of climate-engineering patents has skyrocketed. The patent system, however, may not be ready for the implications of this wave of new applications and may in fact hinder the development of these technologies. Already, one company has cancelled testing of a geoengineering method because of a dispute over a patent.3 One leading advocate of climate engineering argues for a categorical ban of geoengineering patents altogether.4


3 This Article explores the patenting of geoengineering inventions and its potential impact. To place this issue in its appropriate context, Section II reviews the current and future state of the global climate and discusses the basics of geoengineering. Section III explores the current trends in geoengineering patents. Section IV reviews methods used previously to ameliorate problems with the patent system. Finally, Section V proposes an approach to address the concerns raised by geoengineering patents.







4 Dangerous climate change is unavoidable. Structural barriers will prevent a quick reduction in greenhouse emissions. The resulting delay will ensure that warming will have severe consequences. Even worse, the long lifespan of atmospheric carbon will keep the global temperature at its new level for a millennium. Mitigation alone cannot avert these consequences. As a result, we need to consider climate-engineering methods to reduce the level of carbon in the atmosphere to avoid a climate catastrophe.



A. Significant Climate Change Is Becoming Unavoidable


5 The global scientific community agrees that we must hold global warming below 2°C to avoid “dangerous climate change.”5 This goal, however, is now “patently unrealistic.”6 Even more troubling, scientists now project the effects of a 2°C rise to be worse than anticipated, identifying such an increase as “dangerous” or “extremely dangerous” climate change.7


6 Indeed, the National Research Council (NRC) recently reported that the earth is warming so quickly that abrupt and unpredictable consequences are foreseeable in a few decades, or worse, maybe just a few years.8 In its December 2013 report, the NRC analyzed the likelihood of “abrupt climate changes” occurring in the near future.9 The report concluded that the effects of climate change have already begun,10 and that more can be anticipated.11 Furthermore, the risk of reaching various “tipping points”12 has increased markedly.13 Indeed, months later, two groups of scientists concluded that a large portion of the West Antarctic ice sheet has begun an irreversible collapse,14 which will eventually raise global sea levels by several feet.15



B. The Rise in the Planet’s Temperature Will Continue and Last for Centuries


7 Although we can already project that global temperatures will reach dangerous levels, we can also anticipate that, regardless of what steps we take now, warming will continue in the near term. Furthermore, global temperatures will remain at their new levels for centuries. This will occur for a number of reasons, including both an inability to reduce emissions rapidly and the long atmospheric life of carbon.


8 As noted previously, current commitments to reduce greenhouse-gas emissions contemplate continued emissions.16 Scientists have concluded, however, that the eventual increase in peak warming is equivalent to the increase in total emissions. For instance, an annual increase in cumulative CO2 emissions of 0.5% will lead to a comparable increase in peak-committed warming of approximately 0.5%.17 Consequently, if society delays reducing emissions for ten years, such a delay would cause peak warming to be 5% higher than it might have been otherwise.18 A longer delay in emissions reductions will result in a commensurately higher peak warming.


9 Delays in emissions reductions will also render certain peak-warming targets unattainable. Assuming that society eventually achieves a zero-emissions rate (neither a net increase in carbon emissions nor a net extraction of atmospheric carbon), the total amount of emitted carbon determines the lowest peak warming.19 As a result, by 2012, the 1.5°C peak-warming target became unachievable. The 2°C peak-warming target will become similarly unachievable by 2027.20


10 We can also anticipate that by the time we commit to reducing carbon emissions, our ability to do so will be limited. Historically, society has required fifty to sixty years to switch to a new energy source for half of global energy needs.21 This delay results from the level of investment and infrastructural change that a transition to a new energy source requires.22 Unfortunately, postponing this shift to renewables results in “carbon lockin”— referring to the continued construction of fossil-fuel infrastructure. As society

invests more in carbon infrastructure, fewer options to reduce emissions remain and the commitment to fossil fuels becomes more expensive to abandon.23


11 Finally, delays in emissions cuts necessitate much larger reductions in future emissions.24 Delay causes the atmospheric CO2 to peak higher and later, which requires much sharper cuts to attain a particular level.25 Unfortunately, economic models indicate that our ability to reduce emissions may not surpass 5% per year.26 We can thus foresee that regardless of our future commitment to cut emissions, several structural barriers will limit the rate at which this reduction can occur.


12 Besides these structural barriers to reducing carbon emissions, scientists calculate that once we eliminate carbon emissions, planetary warming will continue for decades, with eventual global temperatures remaining at these new levels for centuries. Even with rapid mitigation of carbon emissions, radiative forcing will continue to increase for nearly ten years,27 while the thermal inertia of the ocean will delay the full magnitude of warming. Initially, the ocean absorbs heat, but then it radiates this heat for hundreds of years.28 Thus, taking into account these different factors, even after carbon emissions cease, the global temperature will continue to increase significantly,29 and will then remain at its new level for what many believe to be at least 1,000 years.30 In sum, merely cutting emissions will not suffice—a true solution requires reducing atmospheric carbon.31




C. Climate Engineering: What It Is and How It Can Help


13 The science underlying climate change demonstrates two key considerations. First, significant climate disruption is inevitable, regardless of future emission levels. Second, mitigation alone cannot return the planet to its preindustrial state. To avoid severe climate disruption, we will need to explore a broad range of options. One of these options is climate engineering.


14 Climate engineering32 identifies a broad range of methods and technologies intended to alter the earth’s climate system, counteracting climate change and the effects thereof.33 Geoengineering is set apart from other acts that alter planetary systems in two ways: it involves deliberate efforts and requires global cooperation.34


15 Climate engineering techniques fall into two broad categories.35 The first, solar radiation management (SRM), would increase the reflection of sunlight to cool the planet.36 The second, carbon dioxide removal (CDR), would remove CO2 from the atmosphere.


16 SRM techniques reflect a small percentage of inbound light and heat from the sun back into space.37 They cover a range of methods and costs; some are simplistic while others are technologically complex and potentially prohibitively expensive.38 These techniques also vary as to the part of the environment they affect, such as the earth’s surface, its atmosphere, or outer space. Surface-based techniques include painting roofs white, planting more reflective crops, and covering desert or ocean surfaces with reflective materials.39 Atmospheric methods would increase the reflectivity of clouds (by adding sea salt or other materials to whiten clouds) or inject aerosol particles into the atmosphere. The latter would mimic the temporary global cooling following the ejection of sulfur particles from volcanoes.40 A major advantage of some SRM techniques is that they may be the only means to reduce the global temperature almost immediately, should that become necessary to avert a climate emergency or to buy time to more fully implement mitigation procedures.41


17 In contrast to SRM, CDR removes CO2 directly from the atmosphere. CDR techniques involve methods that store CO2 in the ocean or ground. Ocean-based methods include ocean fertilization, which promotes the growth of carbon-consuming phytoplankton, and enhanced upwelling/downwelling, which alters ocean circulation to increase the availability of nutrients to enhance phytoplankton growth (upwelling) while accelerating the return of CO2-concentrated surface water to the deep sea (downwelling).42 Land-based techniques include direct air capture and sequestration, the use of biomass and sequestration, and afforestation.43


18 CDR removes CO2 directly from the atmosphere by either increasing naturalcarbon sinks or using chemical engineering to remove CO2.44 CDR can thus reverse planetary warming by reducing the atmosphere’s CO2 content. However, it requires the reduction of a significant fraction of CO2 before it can alter the atmospheric balance. CDR may therefore require several decades to have a discernible effect on the environment. On the other hand, its ability to lower the CO2 content of the atmosphere may become critical if significant mitigation efforts come too late to prevent CO2 from reaching levels causing dangerous warming.45 And in contrast to SRM methods, CDR involves fewer environmental risks. By removing CO2 from the atmosphere, CDR simply returns the atmosphere to its preindustrial state. This differs from SRM, which, notwithstanding several possible adverse consequences, would only create an artificial and approximate balance between increased atmospheric-gas concentrations and sunlight levels.46





19 Concerted geoengineering research remains in its infancy. Nevertheless, the patenting of related inventions has grown substantially over the past five years. A number of these patents’ characteristics, however, suggest that they might deter access to this technology, potentially stymieing future climate-engineering innovation.




A. Patent Law Basics


The power to award patents derives from the Constitution. Article I provides that, “Congress shall have Power . . . To promote the Progress of Science and useful Arts, by securing for limited Times to Authors and Inventors the exclusive Right to their respective Writings and Discoveries.”47 Through the Patent Act of 1790, Congress established the first patent system for the United States.48 Congress passed five


subsequent Patent Acts.49 The 2011 America Invents Act (AIA) was the first major reform in patent law since 1952.50 As discussed later, the AIA provides a process for prioritized examination of patent applications.51


21 An inventor commences the patent process by submitting an application to the United States Patent and Trademark Office (USPTO).52 The USPTO assigns the application to an examiner who specializes in that field.53 The examiner then searches previous patents and patent applications, referred to as “prior art,” to determine if the new application involves a novel, useful, and nonobvious invention.54 The application may proceed through several rounds of internal evaluation, interviews of the applicant, and

possibly even appeals before the agency grants the patent.55


22 The patent application process can be both long and expensive. Processing an application often requires multiple years,56 with an average pendency of 29.8 months.57 Applicants typically spend tens of thousands of dollars on, among other things, attorneys’ fees, pre-filing searches, drawing fees, and filing fees before receiving their patents.58 Patents involving environment-oriented inventions tend to be more complicated, and consequently, usually require longer processing times and higher costs.59


23 The grant of a patent provides one primary benefit: the patent owner may exclude others from using the invention. Specifically, the patentee can exclude another from making, using, or selling any patented invention,60 retaining this right for twenty years.61 In exchange for this right, the patentee discloses her invention to the public in the manner required by statute.62 The patentee may receive royalties by licensing the invention during the period of the patent.63


24 The patent system provides several other benefits. The exclusivity provided by patents grants monopoly powers, which foster innovation by enabling inventors to profit from their work.64 For twenty years, inventors can choose to use their inventions, license them to others, or keep them off the market. This enables inventors to recover research and development costs and prevents free riding.65 It also provides inventors with several competitive advantages, especially the ability to attract venture capital and the opportunity to develop related products.66 And importantly, this system promotes full disclosure of inventions. Early disclosure avoids the wasting of resources in unnecessary experimentation67 and facilitates the development of successive inventions, thereby fostering technological advancement.68


25 Despite these benefits, the patent system imposes various costs. For instance, the effective monopoly power provided to inventors raises the invention’s price, thus decreasing its overall availability to society during the patent period.69 In addition, multiple inventors may waste resources by duplicating inventions that have limited availability.70 Among others, these costs must be weighed against the likely benefits of any potential modification of the patent system.



B. Dramatic Increase in Climate-Engineering Patents and Recent Issues


26 Despite the relative infancy of climate-engineering technologies, various entities are currently confronting issues that will drastically influence their development. The USPTO has already received hundreds of applications for patents on these technologies. Furthermore, the number of geoengineering patents granted by the agency has risen dramatically. But a review of these patents illustrates several disturbing trends— specifically, how the breadth of some of these patents could block future developments. Moreover, original inventors are reassigning these patents at an alarming pace, concentrating these patents in the hands of a limited number of patent holders.


27 This author directed a review of USPTO records to determine trends in applications for and granting of patents involving climate-engineering technologies. The review searched the USPTO database using words describing the most common SRM and CDR methods.71 The review included only patents related to one of these two categories, excluding patents pertaining to short-term weather modification. As described below, this review focused on both patent applications72 and patents awarded. 



The number of climate-engineering patent applications and patents granted has risen dramatically over the past five years. The following chart reflects the number of geoengineering applications and patents since 1994:




29 As the chart demonstrates, before 2008, the combined number of patent applications and patents granted for geoengineering technologies did not exceed twenty in a single year. However, the total exceeded forty in 2009, and eventually increased to more than one hundred in 2013. Moreover, the rate at which the USPTO has granted these patents has similarly increased. For instance, the USPTO never granted more than ten such patents annually before 2010. Four years later, the annual number of geoengineering patents granted increased nearly tenfold. In sum, both the number of patents granted and applications filed illustrate startling growth over the past four years.73


30 CDR methods have dominated this recent growth, constituting more than 90% of the geoengineering patents approved by the USPTO. Specifically, of the patents granted, more than half (54%) concern carbon capture, and more than one-third (37%) involve carbon sequestration.74 Particle-dispersion (4%) and solar-ray-reflection (2%) patents commonly recur, with patents involving other various methods making up the difference (3%).75


31 A review of these patents further reveals that many of these inventions are assigned to only a few patent holders. Consequently, the future development of these technologies is concentrated in the hands of a few.76 Only three inventors (or groups of inventors) are credited with inventing five or more climate-engineering patents.77 Combined, these parties have invented twenty-five (10%) of the patented technologies. However, many geoengineering patents have been assigned to other parties, with 200 original patent holders transferring ownership to 122 assignees.78 Eight of these assignees received five or more patents. In total, these eight large patent holders were assigned fifty-six (23%) recent geoengineering patents.79 And of these fifty-six assignments, only eight were transferred to a non-corporate entity—the U.S. Department of Energy.


32 Although these assignments have resulted in concentrated ownership, they remain spread across a number of different industries. A review of some of the largest patent holders and the industries in which they operate shows the following industry distribution for holders of 110 of these patents:


Renewable Energy 35

Universities 29

Manufacturing 13

Government 13

Oil 12

Chemical 8


33 Additionally, a characteristic that typifies many of these patents is the breadth of their terms. For example, Patent 6,056,919 states:


A method of sequestering carbon dioxide in a deep open ocean comprising the following steps:


(1) testing an area of the surface of a deep open ocean, in order to confirm that at least a first nutrient is missing to a significant extent from said area, and to identify said first missing nutrient, and 

(2) applying to said area a first fertilizer which comprises said first missing nutrient, to fertilize said area with an appropriate amount of said first missing nutrient whereby carbon dioxide is sequestered,

(3) limiting zooplankton and fish growth in said area by applying said first fertilizer in pulses; and

(4) measuring the amount of sequestered carbon dioxide that results

from said fertilization of said area.80


Conceivably, the terms of this patent are broad enough to cover numerous processes.81 For instance, the patent claim does not identify the applicable testing procedures, the extent of the area to be tested, the sought-after nutrients, the type of “fertilizer” used, or the “pulses” that the procedure contemplates for applying the “fertilizer.” In fact, such a broadly stated patent encompasses most ocean-fertilization methods while excluding few. Similarly, granted in 2013, Patent 8,603,424 states in part:


Before the invention is described in greater detail, it is to be understood that the invention is not limited to particular embodiments described herein as such embodiments may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the invention will be limited only by the appended claims.82 Thus, the USPTO granted a patent which by its own language specifically rejects any limitations upon its terms. Discussed infra, overly broad patents create myriad issues.


34 A review of these patents also highlights the delay inherent to the application process. On average, the USPTO has required nearly thirty-two months to approve a climate-engineering patent.83 However, this average masks a wide range in processing time. On the short end, the USPTO has awarded a patent within six months of the application’s receipt.84 At the other extreme, the USPTO has required more than eighty months on two separate occasions.85



C. The Current Patent System Exacerbates Geoengineering-Patent Issues


35 As the number of climate-engineering patents has accelerated, the risk that they will impede access and future innovation has similarly increased. The granting of a large number of broad, fundamental patents can create substantial barriers to subsequent innovators.


36 While the number of patent applications and granted patents has increased significantly in recent years,86 the corresponding rate of increase for geoengineering patents has risen even more drastically. Indeed, climate engineering appears to be undergoing a “patent land-grab.” This occurs when a lack of clarity in future technologies encourages speculators to seek patents in developing fields, which in turn causes actual inventors to file patent applications to avoid a competitive disadvantage.87 Coupled with

the increasing number of patent applications for related technologies, the lack of geoengineering research makes the climate-engineering environment ripe for opportunistic exploitation. Indeed, geoengineering is one of the few new fields (along with nanotechnology) in nearly a century to experience substantial patenting at the outset.88


37 In light of the early stage of climate-engineering research, this patent land-grab is particularly pernicious. First, knowledge about geoengineering is in its infancy. Scientists have contemplated climate engineering as a response to climate change for less than one decade.89 Unsurprisingly, significant research into these methods has yet to commence.90 Second, and in part because of the novelty inherent to this technology, a number of climate-engineering patents are poorly defined or overly broad.91 Consequently, holders of some of these early geoengineering patents may control broad swaths of these methods. This is normally a cause for concern because of the immense control patent holders have over future inventions.92 Here, this disparity is especially troublesome because it both deters future innovation and bestows control over technology with potentially immeasurable societal value to only a few.93


38 The timing of patent land-grabs also creates unique problems. By their nature, land grabs occur early in the development of a field. Because of this, applications often seek building-block patents, which cover fundamental products and processes. Building-block patents are therefore distinct “from incremental improvement patents, which have a much narrower claim scope.”94


39 Awarding building-block patents, especially early in an industry’s development, can frustrate the field’s growth. Patents for building-block technologies do not always possess any marketable value of their own, but the inventions they cover can be crucial to downstream development. Thus, patenting these inventions can slow industry innovation.95 Moreover, overly broad patents exacerbate this problem. Broad patents commonly arise at the confluence of several circumstances: a field is novel, standardized terminology has not developed, patent examiners lack experience with and expertise in the new technology, and applicants seek “to capture the largest possible grant of IP protection with the claims of a single patent, leading applicants to draft claims that reach too far.”96 As discussed previously, geoengineering patents share most of these characteristics.


40 Making these adverse effects worse, the patent review process is inherently biased, favoring approval of broad, building-block patents. When applications in new industries are involved, an examiner may not be able to find an embodiment of the claimed invention in prior art. In such circumstances, USPTO policy requires that the claim be allowed, even if stated broadly.97 This is the case even where the examiner believes, but cannot establish, that the claim exceeds the area actually explored.98


41 Broad initial patents can lock up technologies or retard development in a number of ways.99 Overly broad patents prevent potential subsequent inventors from developing new inventions derived from the original patent.100 Furthermore, they allow patent holders to deny licenses, charge exorbitant royalties, or engage in delaying tactics, most notably litigation.101 A related issue surfaces when patents are so broad that they overlap. This widespread distribution of broad, overlapping patents causes various problems, such as those stemming from “patent thickets” or “anticommons.”102


42 A patent thicket arises when patent rights extend more broadly than the actual products claimed in a given field.103 A “dense web of overlapping intellectual property rights” develops,104 and the resulting thicket “choke[s] out an industry.”105 A geoengineering patent thicket may be especially dense because geoengineering endproducts likely incorporate components from many different patentable inventions. For instance, an aerosol method might involve patents for the specific method (e.g., balloons, hoses, etc.), the materials,106 the aerosol injector, and other aspects. Thus, each facet may require different inventions patented by different inventors, further complicating the thicket.107


43 A patent thicket can impede invention in a number of ways. Specifically, it usually requires an inventor to incur additional costs to avoid infringement. While all hopeful inventors must research whether their inventions infringe upon existing patents, and if so, negotiate licenses108—the attendant costs of this process drastically increase when numerous overlapping patents are involved.109 In this context, patents impede rather than promote innovation.110


44 A related problem is that of a patent anticommons. The “tragedy of the anticommons” is the mirror image of its better-known cousin.111 The problem of a commons arises when too few exclusionary property rights result in exhaustion of a resource.112 In the alternative, an anticommons occurs when too many persons have been awarded exclusionary rights, causing a resource not to be fully utilized.113 Thus, the anticommons involves “fragmented property rights, the aggregation of which is necessary to make effective use of the property.”114 But the rights are not just fragmented; they are dispersed among multiple owners. “Once an anticommons emerges, collecting rights into usable private property is often brutal and slow.”115


45 Because of the diffusion of these rights, downstream inventors need to incur greater costs to acquire licenses. These costs will include higher search fees, and more time and money spent negotiating license fees.116 Furthermore, because innovators typically cannot know in advance which rights will become necessary to produce their inventions, they often must acquire more licenses than they actually need.117 Such expenses essentially serve as a tax on further innovation.118 Consequently, in contrast to a commons problem, the anticommons results in the underutilization of the property.119 Specifically, innovators are unable or unwilling (because of costs) to assemble the assorted inventions to produce an innovative product.


46 Thickets and anticommons are similar yet distinct. Thickets involve horizontally overlapping patents.120 Anticommons arise either horizontally with “different companies hold[ing] rights at the same level of distribution,” or vertically with the final product combining upstream and downstream components.121 Unlike a thicket, which results from the distribution of broad patent rights, an anticommons requires the aggregation of a multiplicity of patents controlled by numerous owners.122 Both, however, derive from the excessive granting of patent rights. Moreover, an industry can suffer from both problems concurrently.123


47 One last issue foretells problems for geoengineering innovation: delays in processing patent applications. Timing, both at the beginning and end of the patent system, can impair the development of geoengineering inventions. Delays in processing patent applications slow the rate of innovation.124 On average, patent applications require more than two years to process, extending up to six years in many instances.125 The USPTO has required an even longer period to grant geoengineering patents.126 Since the twenty-year exclusion period usually commences upon the filing of the patent application, a processing delay reduces both the value of the patent to the inventor and the availability of the invention to innovators.127


48 At the back end, the twenty-year exclusion period also impedes the development of climate-engineering inventions. Climate-engineering systems remain in their infancy, with scientists having conducted only limited research on these methods.128 Consequently, most methods will likely require a decade or more of computer analysis and field-testing before they are ready for implementation.129 Limiting access to geoengineering technologies only further delays the development of the underlying methodologies.130





49 Despite the various issues arising from the patenting of climate-engineering inventions, several possible solutions—or combinations of solutions—can help minimize these concerns. This section reviews and analyzes prior approaches and considers their appropriateness for climate-engineering patents. Before exploring these strategies, however, this section identifies some aspects of geoengineering that policymakers must consider when modifying the patent system to address these inventions.



A. Several Considerations Apply Uniquely to Geoengineering Patents


50 While geoengineering patents are new, many of the aforementioned issues are anything but. Previous problems inspire solutions that are useful here, but no single approach provides a perfect or complete answer. Thus, to best place these approaches in their appropriate context, proper analysis must begin with the considerations that apply uniquely to climate-engineering patents.


51 First, time is essential. With the planet’s climate approaching a tipping point,131 and the vast amount of time required to develop and implement geoengineering methods,132 one could argue that humankind is already out of time. Certainly, any further delay will make research, development, and implementation even more urgent.


52 Second, the eventual end-user is likely to be a governmental body, such as the U.S. government or a similar multinational entity.133 This has several implications for the patent system. For instance, if necessary, the U.S. government will be more likely to use whatever means required to break any patent logjams, which it has done previously, most notably during World War I.134 Active governmental involvement is foreseeable if patent holders unreasonably withhold access to essential patents. Additionally, with a government as the primary consumer, regular market forces will exercise less force.


53 In sum, geoengineering is in its infancy. Most of these methods are still at the conceptual or research stages,135 and few field-tests have been proposed.136 The development of new methods, the involvement of new players, and the invention of new devices are likely to cause drastic change in the geoengineering field. Accordingly, flexibility will be an important component of any application review process.



B. The USPTO Can Reduce the Number or Limit the Scope of Climate-Engineering Patents Already Granted


54 Patent thickets and anticommons both result from over-patenting. The USPTO has several tools at its disposal to address these problems. For instance, it can limit the number or scope of certain patents or simply block overly broad patent applications. At the extreme end of the spectrum, the USPTO could independently deny all climateengineering patent applications, or alternatively, Congress could prohibit the patenting of these inventions, both achieving the same result. And concerning patents already awarded, the USPTO can exercise its reexamination power, possibly limiting or revoking such patents where appropriate. Nevertheless, as an industry develops, one assumes the USPTO imposes stricter standards, perhaps even limiting the number of patents annually awarded in a newly established field.137 If recent trends are indicative,138 however, the USPTO’s permissive practices might endure longer than expected.


55 Alternatively, Congress could force a resolution by prohibiting patents of climateengineering inventions. While this approach might seem drastic, the U.S. government has taken similar measures before to protect the public interest. For instance, federal law currently prohibits patents for inventions relating to national security139 or atomic energy.140 Pursuant to these statutes, if the Commissioner of Patents concludes that an application might involve such technologies, then she must submit the application to the appropriate agency for review.141 If the agency concludes that the application implicates these concerns, then the USPTO withholds the patent.142 The applicant, however, is entitled to reasonable compensation,143 determined by the Patent Compensation Board.144 The Atomic Energy Act similarly bars patents for inventions that are “useful solely in the utilization of special nuclear material or atomic energy in an atomic weapon.”145


56 Climate change has national security implications.146 Because of the risks inherent in several geoengineering methods,147 many are unlikely to be used except in the event of a climate emergency. Thus, premising a reduction or even prohibition of climateengineering patents upon national security concerns could be justified. Furthermore, by definition, a prohibition on such patents would prevent the problems of thickets and anticommons from worsening, and remove barriers to future inventions.148


57 Nevertheless, the disadvantages of such a ban outweigh its benefits. The outright prohibition of patents and their corresponding exclusivity rights would likely discourage research and investment in a fledgling field.149 And given that these inventions will likely have geoengineering and non-geoengineering uses,150 an inventor may circumvent this limitation by seeking patent protection for its other uses, while keeping silent about the climate-engineering aspects of the invention. Furthermore, prohibiting or denying patents for future inventions will not resolve the problems associated with current patents, specifically the difficulty of identifying and tracking geoengineering inventions and securing rights to the use thereof.


58 Congress adopted a slightly different approach for inventions related to the space program. Inventions pertaining to space activities developed during employment or under contract for the U.S. government became the exclusive property of the United States,151 ensuring that such inventions were available for this national purpose. Climate engineering not only shares many parallels with the space program, such as governmental involvement and national (indeed, global) benefit,152 but also is more urgent. Thus, a comparable provision asserting exclusive government control of such inventions, joined

with broad or open licensing practices, could help eliminate the problems of thickets and anticommons. While this might be helpful, in light of the wide range of private industries currently involved in geoengineering research,153 this restriction would likely have limited impact.


59 Alternatively, the USPTO could reexamine and, where appropriate, revoke or narrow previously issued patents. The Patent Statute authorizes any person at any time to file a request to reexamine any patent on the basis of prior art.154 Further, the America Invents Act (AIA) provides two new procedures for third parties to request patent review.155 The first procedure—post-grant review—enables a third party to challenge a patent on any ground of patentability within nine months of the granting of the patent.156 After this nine-month period (or resolution of a post-grant review), the second procedure, called inter partes examination, allows anyone to request that one or more claims of a patent be deemed unpatentable.157 But despite these improvements, the new procedures likely provide inadequate remedies because filing for a patent reexamination is labor intensive and expensive.158 Simply stated, relying upon prospective inventors to reduce the thicket in this manner seems both misplaced and unrealistic.


60 Perhaps more promising, the USPTO Director also possesses the power to initiate reexamination of a patent, either after request or upon the Director’s own initiative.159 A Director, however, rarely issues an order to commence reexamination.160 That said, one of the few instances of director-initiated reexamination addressed an analogous trend of granting overly broad patents in a fledgling and complex field. For an entire decade, the USPTO had denied all software patent applications. But in 1981, in Diamond v. Diehr, the Supreme Court held that software was patentable.161 As a result, and in part because of a lack of examiners possessing the necessary expertise, the USPTO began granting excessively broad software patents. After receiving much criticism for these broad patents, the Director initiated a reexamination, and ultimately, the agency rescinded dozens of these patents.162 Finally, and serving as the most extreme alternative procedure, Congress can simply revoke all geoengineering patents, as it did when enacting the Atomic Energy Act (AEA). Congress passed the AEA to provide for government control of the possession, use, and production of atomic energy and special nuclear material, and to encourage widespread participation in the development and utilization of atomic energy for peaceful purposes.163 To these ends, the law “revoked all existing patents useful exclusively in the production of fissionable materials.”164 While revocation, or “patent breaking,” would help reduce the number and breadth of climate-engineering patents, most commentators consider it an unpalatable option used only in dire circumstances.165 For this reason, compensation is available for any patent revoked under these provisions.166 In view of these considerations, namely the significant resources required and limited deterrent value for future patent applications, patent breaking probably provides only a remedy of last resort for dealing with these issues.



C. Compulsory Licenses Can Ensure Access to These Inventions


62 A similar yet less extreme option often suggested by commentators to improve access to patents is compulsory licensing. A compulsory license “compels a patent owner to allow certain others to practice the invention otherwise protected by a patent.”167 The government effectively steps into the shoes of the patent holder to grant a license to a government agency or third party. Usually, the patentee receives compensation for the compelled license.168


63 The primary benefit of compulsory licenses is that they allow widespread access to inventions to facilitate further innovation.169 Specifically, compulsory licensing can be critical when the market has failed to disseminate inventions. This occurs when the patent owner exercises its monopoly power but chooses not to practice the invention or charges unreasonable prices for a license.170 Therefore, many argue that compulsory licensing may mitigate patent thickets171 and anticommons,172 both of which impair future inventors’ attempts to acquire the necessary licenses to continue innovation. Given that these licenses are especially appropriate when the underlying invention has significant social value, at first blush, compulsory licensing appears to offer a possible solution.173


64 Yet the U.S. patent system generally disfavors compulsory licenses. As the Supreme Court recognized, “Compulsory licensing is a rarity in our patent system.”174 A broad grant of compulsory licenses has generally received a frigid reception from domestic parties, with U.S. courts and many commentators often “hostile to the very concept of compulsory licensing.”175 And although courts recognize compulsory licensing as a solution for antitrust violations,176 it is considered a remedy of last resort.177


65 On only a few occasions, and none recently, courts have imposed compulsory licenses.178 In one case, the Second Circuit found a compulsory license appropriate primarily because the patent owner was not using the license to manufacture a product.179 Subsequent decisions of the Federal Circuit, however, indicate that it is unlikely to award compulsory licenses in the future.180 Indeed, the Federal Circuit consistently posits that broad protection of patent rights conforms to public policy.181


66 Despite this resistance, the use of compulsory licenses to resolve legal disputes has spawned some significant successes; the most prominent examples of which occurred over a half-century ago. In 1956, the United States entered into consent decrees with American Telegraph & Telephone (AT&T) and International Business Machines (IBM) concerning their patents. The agreement with AT&T required that it license at reasonable royalties all patents controlled by a subsidiary, Bell Systems.182 Similarly, the IBM decree required that it grant nonexclusive, nontransferable licenses for all of its patents to any applicant at reasonable royalties. Accordingly, the applicant was obligated to cross license its patents to IBM on similar terms.183 While some originally opposed this government involvement, in hindsight, the combined licensing of these patent portfolios is widely recognized for fostering the rapid growth of the semiconductor industry.184


67 Nevertheless, Congress has repeatedly rejected invitations to enact a broad compulsory license statute. While the Patent Act does not contain a general compulsory licensing provision,185 during its 1952 revision of U.S. patent law, Congress considered incorporating a compulsory licensing provision. However, after vehement opposition, it excluded this provision from the final bill.186 A few years later, Congress reconsidered adding the provision, but again rejected it.187 Subsequent efforts to amend the Patent Act to allow compulsory licensing for public health purposes or special circumstances have also failed.188 With opposition still salient, the United States remains one of the few countries without a general compulsory license provision.189


68 Nevertheless, in certain limited circumstances, inapplicable to the vast majority of patents,190 Congress has provided for the imposition of compulsory licenses.191 The most noteworthy examples, touched on before and discussed below, are the Atomic Energy Act and Clean Air Act. Other instances of limited compulsory licensing are found in the Tennessee Valley Authority Act (granting compulsory licenses for inventions related to fertilizer or hydroelectric power),192 the Plant Protection Act (granting compulsory licenses when necessary to provide an adequate supply of fiber, food, or feed),193 and the

Semiconductor Chip Protection Act (granting innocent purchaser of an infringing chip the right to pay a reasonable royalty).194


69 The Atomic Energy Act (AEA) provides a form of compulsory license. Upon receipt of an application to practice a license, the Atomic Energy Commission will conduct a hearing to determine whether the patent implicates the public interest.195 That is, the public interest must be of primary importance to the utilization of fissionable material to effectuate the purposes of the AEA.196 Where the public-interest inquiry has been satisfied, the Commission may grant a nonexclusive license197 to either the government or a person seeking a license.198 If a person applies for a license, the applicant must demonstrate that he cannot receive a license from the patent holder for a reasonable amount.199 The AEA correspondingly mandates that patent owners receive reasonable royalties from licensees.200


70 Congress similarly included a compulsory license provision in the Clean Air Act (CAA), which places the primary responsibility for air-pollution prevention and control on the states.201 The CAA seeks to improve air quality through the implementation of a regulatory scheme designed to stimulate private development of air-pollution-control technology.202 Because of the importance of access to these technologies, Congress included a means for states to acquire compulsory licenses to technologies necessary to achieve federally mandated air-quality standards.203 If the state can satisfy a set of requirements,204 then the U.S. Attorney General certifies the application to a district court, which may order the patentee to license the invention upon reasonable terms.205 While states have yet to employ this provision, one commentator suggests that its presence may have persuaded parties to negotiate agreements they might not otherwise have reached.206


71 The U.S. government has also reserved the right to a compulsory license for any U.S. patent.207 When the United States uses or manufactures (or contracts with a party to do so) an invention protected by a U.S. patent, it acts not as an ordinary infringer but as a compulsory, nonexclusive licensee.208 Congress enacted this law to enable the federal government to purchase goods necessary to its performance without the threat of having the supplier enjoined from selling patented goods to the U.S. government.209 The United States’ right to compel a license applies broadly, and the federal government exercises this right frequently.210


72 Additionally, although Congress has not approved a general compulsory license provision, it did provide the federal government broad licensing rights for governmentfunded inventions. In 1980, Congress passed the Bayh-Dole Act (BDA), which amended the patent code.211 Prior to the passage of the BDA, the USPTO received very few applications for federally funded inventions, the majority of which remained in the hands of educational institutions.212 Congress approved the BDA to promote the utilization of inventions arising from federally funded research, to encourage small businesses’ participation in federally funded research, and to foster the collaboration of profit and nonprofit interests, especially universities.213 The BDA accomplished these goals by allowing universities to retain title to federally funded inventions.214


73 This transfer of rights had a profound effect. Since 1980, the number of patents generated by domestic universities has increased tenfold.215 Additionally, university income from licensing increased from $7.3 million in 1981 to $3.4 billion in 2008.216 Yet universities were not the only benefactors. In exchange for allowing universities to retain title to their inventions, the BDA establishes “march-in rights” for federal agencies that fund these patented inventions. And because march-in rights allow funding agencies to grant licenses to qualified third parties,217 the private sector benefits as well. In essence, the BDA establishes compulsory licenses for those inventions that arise from federal funding.218


74 Further, the U.S. government may exercise its march-in rights, inter alia, to alleviate health or safety needs.219 These rights, however, appear not to have been exercised in the three decades since Congress passed the law.220 Joshua Sarnoff suggests that the refusal to exercise these rights demonstrates their highly controversial nature, specifically in that they function as “ex post regulatory compulsory license[s].”221 Again, American antipathy to compulsory licensing proves persistent.



75 International agreements and laws, on the other hand, typically support compulsory licenses dating back to the 1873 Vienna Congress.222 Currently, for example, the Trade- Related Aspects of Intellectual Property Rights Agreement (TRIPS) identifies several grounds for granting compulsory licenses, such as in response to national emergencies, anticompetitive practices, or unavailable necessary medicine.223 Further, both the Paris Convention and the North American Free Trade Agreement (NAFTA) also provide for the exercise of such licenses.224 Many nations have enacted compulsory license laws as well. For instance, when the World Intellectual Property Organization (WIPO) surveyed its member states concerning their compulsory licensing provisions, twenty-two countries responded that they allow compulsory licenses for national or public interests,225 while twelve countries responded that they provide such licenses for public health reasons.226


76 However, even countries with compulsory licensing provisions rarely implement them.227 More commonly, governments threaten to utilize their licenses, thus coercing patent holders to either grant licenses or make the products available at substantially lower prices. For instance, in 2001, Brazil announced its intent to grant a compulsory license to produce Nelfinavir, a retroviral drug used in the treatment of AIDS.228 Brazil planned to act under the “national emergency” provision of its patent law, which mirrors Article 31 of TRIPS.229 Less than two weeks after Brazil’s announcement, Hoffman-La Roche reduced the price of the drug by 40%.230 Thus, the true benefit of compulsory licenses may stem from the threat of potential licensing rather than the actual grant thereof, inspiring patent holders and potential licensees to negotiate agreements.231 While governments have used compulsory licensing infrequently, many proponents identify the coercive nonuse of compulsory licensing as its primary benefit. Referred to as a “wings effect,”232 the mere ability of the government to compel licenses can encourage patent holders and inventors to negotiate acceptable terms rather than risk governmental intervention.233


77 Yet notwithstanding their realistically benign influence, critics attack compulsory licenses on several grounds.234 The primary criticism has been that these licenses reduce incentives to invent because they diminish the value of inventions by eliminating inventors’ opportunities to exercise monopoly pricing. The resulting lower return lessens the main incentive to invent.235 Moreover, fearing this potential loss of value, many inventors might avoid patenting their inventions, thus inhibiting the beneficial disclosure that an application requires.236 Finally, the reduced prices resulting from compulsory licenses would discourage research investment, further hindering opportunities for innovation.237 In other words, critics argue that compulsory licenses could undermine the primary objectives of the patent system.238


78 Critics also charge that compulsory licenses reduce competition.239 Although theoretically possible, the actual use of these licenses has avoided this consequence. As noted previously, the U.S. government tends to use compulsory licenses sparingly, if at all.240 Further, some commentators suggest that compulsory licenses should only be used in circumstances where the patent owner is either not licensing the invention entirely or only in a limited manner.241 Thus, under current practices, any anticompetitive impact would likely be minimal.


79 Compulsory licenses certainly could help address the problems developing with geoengineering patents. The general resistance to their use, however, favors relying primarily upon less disruptive measures. Perhaps, compulsory licenses might be most useful as sticks to encourage voluntary participation in a less severe manner. Patent pools provide precisely such a method.



D. Patent Pools Allow the Retention of Rights and Provide Broader Access


80 The conditions for a patent pool arise when two or more patent holders control related patents, but at least some manufacturers of the end-product do not possess licenses.242 Stated simply, a patent pool is an agreement between two or more patent holders to license their patent rights. The patent holders usually convey their rights to a single entity, such as a limited liability partnership or corporation, allowing persons interested in the patents to purchase licenses to the entity’s entire portfolio.243 Then, the pool allocates the license fees to the patent owners pursuant to a predetermined formula.244 Patent pools are typically voluntary organizations.245


81 Patent pools are especially helpful in addressing patent thickets, where separate patent holders own patents for individual, related components.246 Patent pools can also be effective in remedying patent anticommons.247 Broadly stated, a patent pool solves both the thicket and anticommons problems because it facilitates innovation by expanding the number of persons who can utilize patented subject matter.248


82 One of the most prominent examples of a patent pool involved the early American aviation industry. Following their historic invention, the Wright brothers sought and received a broadly defined airplane patent.249 Subsequently, the founders of flight attempted to block nearly all airplanes as infringements upon their patent.250 Further exacerbating “a chaotic situation concerning the validity and ownership of important aeronautical patents,” various aircraft companies threatened competitors with patent infringement suits.251 Because of the years of protracted litigation, at the start of the First World War, the U.S. aviation industry had produced a fraction of the number of planes produced by either France or Germany.252


83 Upon the United States’ entry into the war, the federal government chose to intervene, in part through the efforts of then-Assistant Secretary of the Navy Franklin D. Roosevelt.253 The U.S. government faced difficulty fulfilling plane orders and, as the principal purchaser of aircraft, greatly suffered from increased prices. Airplanes required components covered by a number of patents, and manufacturers were afraid of possible infringement suits.254 To resolve this problem, the Manufacturers Aircraft Association (MAA) incorporated in 1917.255 Manufacturers of aircraft and related parts purchased a share of the association,256 enabling them to exercise licenses on key patents shared in the pool.257 This arrangement was so successful that, upon its expiration after the war, the War and Navy Departments negotiated a new agreement with the MAA.258 By the end of the 1920’s, the aviation industry, which had produced only 100 planes preceding the war, was manufacturing 7,500 planes annually.259


84 Providing a more recent example, in 2009, UNITAID formed the Medicines Patent Pool (MPP) using the MAA as a model.260 Several countries established UNITAID to develop a financing mechanism providing regular, sustainable, and predictable long-term financing for drugs and diagnostics used to treat AIDS, tuberculosis, and malaria in developing countries.261 But while UNITAID created the MPP using the MAA as its guiding framework,262 the arrangements differ in significant ways. Most obviously, participation in the MPP is voluntary, whereas the MAA was not.263 Further, the MPP negotiates with generic-drug manufacturers for non-exclusive licenses,264 which extend to multiple uses (e.g., a drug typically used for HIV can also be produced to treat hepatitis B), but not to new uses.265 Finally, employing modern technology to its advantage, the MPP publishes on its website the names of relevant pharmaceutical companies that have or have not joined the pool.266


85 Thus, while UNITAID used the MAA as a blueprint, the MPP’s structure was uniquely tailored not only to a specific field, but also to modern realities. These distinctions illustrate the utility and flexibility of patent pools in cultivating innovation though cooperation. From the consolidation of sewing-machine inventions in the mid-19th century267 to the standardization of modern radio and television,268 the past two centuries are replete with examples of patent pools enabling the development of critical technologies.269


86 Patent pools provide myriad advantages. For instance, they help resolve problems arising from building-block patents. Typically, patent pools do this by providing economic incentives for holders of building-block or component patents to cooperate when developing end-products.270 This is what essentially transpired in the aviation industry during World War I.271 Patents on fundamental inventions coupled with a general unwillingness to license the inventions at reasonable rates paralyzed the aviation industry. Establishing a patent pool through the MAA provided manufacturers with access to these inventions, enabling the production of airplanes at a greatly enhanced pace.272


87 Another key advantage is that patent pools help reduce licensing-transaction costs. Patent pools minimize or avoid many costs of acquiring licenses. These avoided costs include patent searches and possible litigation expenses related to patent infringement actions.273 Pools also help minimize the effort required to address questionable patents, such as those that are either invalid or excessively vague.274 They provide even greater efficiencies when patents on complementary technologies are available through the pool.275 Patent pools can thus provide an efficient, “one-stop” shopping means for acquiring access to patents that are essential for a given technology.276


88 Patent pools also have benefits over involuntary licenses and the effects thereof, such as those resulting from compulsory licensing schemes or litigation. Pools, unlike involuntary measures, derive their valuations and royalty prices from the consensus of persons involved in the industry. This increases the likelihood that they fairly reflect their market value.277


89 The most common criticism of patent pools stems from their potentially anticompetitive impact. In the past, some have used patent pools to collude and fix prices.278 Consequently, federal regulators and courts historically have viewed patent pools with skepticism. In recent years, however, these critics have more readily acknowledged a patent pool’s ability to encourage innovation.279 Indeed, the joint guidelines of the Federal Trade Commission and the Department of Justice recognize that patent pools provide procompetitive benefits.280 Many commentators note that careful scrutiny of the pooling arrangement can minimize anticompetitive tendencies.281


90 Patent pools can help address the thickets and anticommons developing with climate-engineering patents. Furthermore, a geoengineering pool is likely to avoid the resistance that more disruptive approaches, such as patent breaking or compulsory licenses, would engender. Similar to how patent pools played critical roles in makingradio and airplane inventions available, patent pools can again help provide access to inventions that may play a crucial role in society’s future.





91 Because of the rapid acceleration in geoengineering patents and the growing urgency of climate change, the United States needs to modify its patent system to facilitate these inventions. First, it should establish a separate process for consideration of these applications, including a process for expedited review. Second, to facilitate access to these patents, the U.S. government should encourage the establishment of a patent pool, which would provide limited licenses for climate-engineering innovation. The government should also be empowered to ensure that all essential patents join the pool.


A. The United States Needs a Unique Patent Process for Climate-Engineering Inventions


92 A patent system tailored for geoengineering patents must provide for quick review. Not only will this require an expedited-review mechanism, but it should also include separate application and review procedures for climate engineering. Specifically, the USPTO should establish a separate application process staffed by examiners specializing in geoengineering patents. Experience indicates that such procedures accelerate review.282 In addition, a separate process will help the USPTO develop sufficient expertise to analyze and resolve these applications. This is especially important because, unlike most industries, the geoengineering field resembles an umbrella, incorporating a number of diverse technologies under a common goal.283 Furthermore, future methods may be unforeseeable. Thus, the establishment of a separate office with a dedicated staff would facilitate the approval of related inventions and enable the staff to stay abreast of recent developments in the field. Finally, as examiners develop greater expertise, they are less likely to approve broadly defined patents, which would help mitigate problems associated with thickets and anticommons at their source.


93 A separate process will also centralize information about geoengineering patents. Currently, applications do not need to identify their inventions as related to climate engineering. Consequently, searching for related patents is unduly time consuming.284 Identifying geoengineering patent applications separately will facilitate both the examination process by the USPTO and their subsequent identification by third parties, such as future inventors and manufacturers.


94 Recent evidence further supports the conclusion that, by establishing a separate application process, the USPTO can review applications more easily and expeditiously. NORTHWESTERN JOURNAL OF TECHNOLOGY AND INTELLECTUAL PROPERTY [ 2 0 1 5 32 In 2009, the USPTO initiated its Green Technology Pilot Program (GTPP).285 The program provided a means for green-technology patent applications to receive preferential consideration without needing to satisfy all of the accelerated-examination program’s requirements.286 While the GTPP ended in March 2012,287 subsequent analysis determined that the separate process used for that program did in fact facilitate expedited review.288 Accelerated consideration is critical for geoengineering patents because of the prolonged time required to research and test these technologies,289 especially given that climate change is already surpassing tipping points.290 For these reasons, geoengineering patents provide a more compelling case for expedited consideration than do patents in most other fields.


95 As did the GTPP, this new climate-engineering program should attempt to limit burdens placed upon applicants. Analysis suggests that added burdens—such as prior-art searches—deter applicants from using the accelerated-examination procedures.291 Unlike the GTPP, however, this new program needs to provide expedited review throughout the application process. Stahl and Beshore found this approach to mesh successfully with the USPTO’s accelerated-examination process.292


96 Additionally, a separate process would enable the USPTO to develop a public database of climate-engineering patents. Such a database could reduce transaction costs resulting from preparing applications and prior-art searches.293 It would also help other inventors, researchers, and the public stay informed of developments concerning these technologies. For instance, a similar database, GenBank, exists for genetic sequences.294 The National Institutes of Health designed GenBank to provide the scientific community access to the most up-to-date DNA-sequence information.295 Similarly, a geoengineering database can facilitate access to information about climate-engineering patents.



B. The United States Should Establish a Geoengineering Patent Pool to Facilitate Access to These Patents


97 Besides modifying the application process, the United States needs to ensure access to climate-engineering inventions to spur innovation. To this end, it should facilitate the establishment of a patent pool, and encourage or compel inventors to join. Furthermore, the United States should structure licenses for the pool’s patents to minimize costs to innovators.


98 The patent system needs to provide inventors sufficient access to climateengineering patents. Following a model previously established to address the urgent need for patent-barrier elimination, the U.S. government can achieve this goal. Nearly one century ago, the United States used the urgency of a World War and the threat of compulsory licensing to break two patent logjams. This prodding resulted in the establishment of the MAA and RCA.296 Similarly, the United States should encourage the creation of a climate-engineering patent pool, which, for simplicity, this Article will refer to as “GeoPool.”


99 GeoPool would present significant advantages over the current patent model and the various alternatives. Pools have previously helped break through barriers created by overlapping and diffuse patent distributions.297 The “one-stop shopping” opportunity that pools provide to innovators enables efficient and inexpensive access to patents,298 which facilitates fair licensing rates299 and spurs investment.300 Thus, by improving access and minimizing costs, pools can foster innovation301 and centralize information related to climate engineering and inventions. To accomplish this, GeoPool will need an administrator to determine which patents to include in the pool.302 This is especially important because of the breadth of technologies falling under the heading of climate engineering that continue to evolve,303 thus requiring the parameters of the pool to be interpreted flexibly.304


100 Because of the likely variety of inventions included in this pool, measures should be included to minimize the royalties that prospective licensees must pay for access to only some of the pool’s patents. Specifically, GeoPool should utilize provisions that limit licensees’ costs. For instance, severable or unbundled licenses allow a party to obtain licenses to fewer than all of the patents in the pool.305 This is important since innovators rarely know in advance which rights will be essential in developing an invention.306 In addition, the inclusion of termination rights would allow pool members to terminate a license on one or more patents while retaining their rights to other licenses.307 Such rights help reduce licensing costs for technologies that become dead ends. In other words, termination rights allow innovators to limit their investment in licenses that prove to be unproductive, thus encouraging innovator participation in the pool.


101 In this same vein, GeoPool should require that participants provide only a field-ofuse license limited to geoengineering uses.308 This limited license would allow pool members to utilize the patent for climate-engineering purposes while enabling original patent holders to retain patent rights over non-geoengineering uses. Thus, original patent holders could still benefit from the ability to license and receive royalties for these other uses. Since many climate-engineering inventions may have other applications,309 this significantly eases the blow of losing royalties from geoengineering uses.


102 Finally, following previous frameworks, the federal government should utilize a combination of “carrots” and “sticks” to ensure inclusion of essential patents. As with prior patent pools, membership in GeoPool should be voluntary, if possible. Hopefully, the access that membership in the pool allows to other technologies, much as IBM gained by licensing its patents, will provide a sufficient “carrot” to incentivize widespread membership.310 But just as the United States was one century ago, it must be willing to utilize some “sticks” to prod patent holders into joining GeoPool. For instance, for geoengineering patents that do not join the pool, the USPTO can reexamine the patent to determine whether to narrow or break it. Although patent breaking is an extreme, rarely utilized solution,311 as discussed previously, it is one of several tools available for the U.S. government to compel licenses, along with exercising its march-in rights for federally funded inventions.312



103 Yet the most palatable “stick” in this scenario lies in compulsory licensing. Although the United States lacks a general compulsory license provision,313 the exercise of such a provision would be consistent with international agreements like TRIPS314 and NAFTA.315 These agreements allow compulsory licenses to be granted during national emergencies, or in the alternative, for public, noncommercial uses.316 However, in circumstances requiring urgent and coordinated action such as this, adding a provision to the Patent Act that allows private parties to practice a license in the public interest would be most beneficial, perhaps mirroring a similar provision in the Atomic Energy Act.317


Ideally, the legislation would provide an expedited process whereby the USPTO could rule upon pertinent requests.318 Of course, should actual implementation of a method become necessary, the United States’ right to exercise a compulsory license over any patent it has authorized ensures that it can guarantee access to essential inventions.319





104 The geoengineering-patent land-grab has already begun. These technologies, however, may become critical to society’s response to climate change. Because of the importance of these technologies, the United States needs to ensure that these patents do not deter innovation or prevent these technologies from being available for implementation. Specifically, it should develop unique procedures to approve these applications and form a geoengineering patent pool that will facilitate both innovation and accessibility.


1 CLIMATE CHANGE 164, 164 (2014). Present emissions exceed the Fifth Assessment Report’s highest Representative Concentration Pathway, in which total emissions exceed the 2°C budget by mid-century. Id. The 2°C rise had been the level at which avoiding dangerous climate change could be avoided, but many now believe that level should be set at 1.5°C. Id.




3 Daniel Cressey, Cancelled Project Spurs Debate over Geoengineering Patents, 485 NATURE 429, 429 (2012).


4 Anne C. Mulkern, Researcher: Ban Patents on Geoengineering Technology, SCI. AM. (Apr. 18, 2012),




5 Wil Burns, Introduction: Climate Change Geoengineering, 7 CARBON & CLIMATE L. REV. 87, 87 (2013) (internal citations omitted).


6 Id. Indeed, a United Nations report notes that current emission trends and commitments project warming reaching 3.5°C to 5°C by 2100. WORLD BANK, TURN DOWN THE HEAT 1 (2013).


7 Kevin Anderson & Alice Bows, Beyond “Dangerous” Climate Change: Emission Scenarios for a New

World, 369 PHIL. TRANSACTIONS ROYAL SOC’Y A 20, 23 (2011).


8 Tony Barboza, Studies Warn of Abrupt Environmental Effects of Warming, L.A. TIMES (Dec. 3, 2013),

http://articles.latimes.com/2013/dec/03/local/la-me-climate-urgency-20131204 (citing NAT’L RESEARCH COUNCIL, ABRUPT IMPACTS OF CLIMATE CHANGE: ANTICIPATING SURPRISES (2013), available at http://www.nap.edu/catalog.php?record_id=18373).


9 NAT’L RESEARCH COUNCIL, supra note 8, at 21. The report identifies “abrupt climate changes” as “abrupt changes in the physical climate system.”Id. at 2.


10 Id. at 3. These changes include the disappearance of late-summer Arctic sea ice and increases in extinction rates. Id.


11 Id. at 14–17 (identifying the following as abrupt changes with a moderate likelihood of occurring this century: decrease in ocean oxygen, increase in heat waves, increase in precipitation events, and rapid

changes in ecosystems and species habitats).


12 “Tipping points” are thresholds beyond which major and rapid changes occur when crossed. Id. at vii.


13 Barboza, supra note 8.


14 Ian Joughlin, Benjamin E. Smith & Brooke Medley, Marine Ice Sheet Collapse Potentially Under Way for the Thwaites Glacier Basin, West Antarctica, SCIENCE, May 16, 2014, at 735, 738.


15 E. Rignot et al., Widespread, Rapid Grounding Line Retreat of Pine Island, Thwaites, Smith, and Kohler Glaciers, West Antarctica, from 1992 to 2011, 41 GEOPHYSICAL RES. LETTERS 3502, 3502 (2014).


16 WORLD BANK, supra note 6, at 1.


17 Myles R. Allen & Thomas F. Stocker, Impact of Delay in Reducing Carbon Dioxide Emissions, 4 NATURE CLIMATE CHANGE 23, 24 (2014). Allen and Stocker use an increase of 2% in their calculation. However, the mean annual increase of atmospheric carbon has averaged 0.57% since 2005. See Annual Data: Atmospheric CO2, CO2NOW.ORG, http://co2now.org/current-co2/co2-now/annual-co2.html (last visited Sept. 14, 2014). Accordingly, this Article uses 0.50% to better approximate the actual increase of atmospheric carbon.


18 Allen & Stocker, supra note 17, at 24.


19 Thomas F. Stockey, The Closing Door of Climate Targets, SCIENCE, Jan. 18, 2013, at 280, 281


21 Vaclav Smil, The Long Slow Rise of Solar and Wind, SCI. AM., Jan. 2014, at 52, 54. For instance, the transition from wood to coal as the primary energy source took sixty years. Id. at 55. Subsequent transitions, however, have taken longer. Oil, after nearly ninety years of use, provides only 40% of world energy. Similarly, the transition from oil to natural gas is occurring at an even slower rate. Id. Indeed, natural gas has required fifty-five years to supply 25% of the world energy market. By comparison, oil required only forty years and coal required only thirty-five years. Id. at 56. The transition to renewable energy is proceeding even more slowly. After twenty years of subsidized development, “new” renewables (wind, solar, modern biofuels) provide less than 5% of global energy. Id. at 54–55.


22 Id. at 56. Globally, the investment in energy infrastructure—including coal mines, oil wells, gas pipelines, refineries, and filling stations—is worth at least $20 trillion. Id. at 57. Furthermore, power plants have average lives of twenty-five to fifty years, and some have operational lives of up to 100 years. Consequently, only 2%–4% of existing sources require replacement in a given year. Gert Jan Kramer & Martin Haigh, No Quick Switch to Low-Carbon Energy, 462 NATURE 568, 568 (2009).




24 Bryan K. Mignone et al., Atmospheric Stabilization and the Timing of Carbon Mitigation, 88 CLIMATIC CHANGE 251, 253 (2008).


25 Id. at 255.


26 See Stockey, supra note 19, at 281.


27 See Detlef P. van Vuuren & Elke Stehfest, If Climate Action Becomes Urgent: The Importance of Response Times for Various Climate Strategies, 121 CLIMATIC CHANGE 473, 480 (2013).




29 H. Damon Matthews & Ken Caldeira, Stabilizing Climate Requires Near-Zero Emissions, 35 GEOPHYSICAL RES. LETTERS 1, 1 (2008). The IPCC estimates that if the composition of the atmosphere were to be held constant, the global temperature would still rise by up to 0.9°C by the end of the 21st Century. IPCC, supra note 2, at 822.


30 See Susan Solomon et al., Irreversible Climate Change Due to Carbon Dioxide Emissions, 106 PROC. NAT’L ACAD. SCI. U.S. 1704, 1704 (2009).


31 As one of the authors of the IPCC’s Fifth Assessment Report describes the situation, “A large fraction of climate change is thus irreversible on a human timescale, except if net anthropogenic CO2 emissions were strongly negative over a sustained period.” Fred Pearce, World Won’t Cool Without Geoengineering, Warns Report, NEW SCIENTIST (Sept. 25, 2013, 11:40 AM), http://www.newscientist.com/article/dn24261-world-wont-cool-without-geoengineering-warns-report.html#.U11Md1cvBfS.


32 Numerous terms besides “climate engineering” have been used to refer to these efforts, including “geoengineering,” which appears most frequently. Although “climate engineering” may more accurately describe the processes, here it will be used interchangeably with “geoengineering.” BART GORDON, H.R. COMM. ON SCI. & TECH., 111TH CONG., ENGINEERING THE CLIMATE: RESEARCH NEEDS AND STRATEGIES FOR INTERNATIONAL COORDINATION 39 (2010).


33 IPCC, supra note 2, at 23, Annex I.




35 The Royal Society, the United Kingdom’s national academy of sciences, produced a seminal analysis of geoengineering that utilized this distinction. Id. at 1. Subsequent reports, including those prepared by a House subcommittee, the National Regulatory Commission, the Government Accountability Office, and the IPCC, have followed this dichotomy. See supra notes 2, 8, 32, and infra note 40.


36 IPCC, supra note 2, at 91.


37 ROYAL SOC’Y, supra note 34, at 23.


38 Space-based reflective mirrors, for instance, could require several decades and trillions of dollars to put into place. Roger Angel, Feasibility of Cooling the Earth with a Cloud of Small Spacecraft near the

Inner Lagrange Point (L1), 103 PROC. NAT’L ACAD. SCI. U.S. 17184, 17189 (2006).


39 Peter J. Irvine, Andy Ridgwell, & Daniel J. Lunt, Climatic Effects of Surface Albedo Geoengineering, 116 J. GEOPHYSICAL RES. 2 (2011).


40 U.S. GOV’T ACCOUNTABILITY OFFICE, GAO-10-903, CLIMATE CHANGE: A COORDINATED STRATEGY COULD FOCUS FEDERAL GEOENGINEERING RESEARCH AND INFORM GOVERNANCE EFFORTS 10 (2010) [hereinafter GAO CLIMATE CHANGE REPORT]. Aerosol methods are modeled after the global cooling effect produced when volcanoes emit sulfur into the atmosphere. For instance, when Mount Pinatubo erupted in 1991, it cooled the globe by approximately 0.5°C in less than one year. David W. Keith, Edward Parson & M. Granger Morgan, Research on Global Sun Block Needed Now, 463 NATURE 426, 426 (2010).


41 IPCC, supra note 2, at 91, 96.


42 GAO CLIMATE CHANGE REPORT, supra note 40, at 7.



43 Id. at 8. “Afforestation” refers to the establishment of trees on non-treed land. INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE, LAND USE, LAND-USE CHANGE AND FORESTRY (2000), available at http://www.ipcc.ch/ipccreports/sres/land_use/index.php?idp=47.


44 IPCC, supra note 2, at 9.


45 For instance, in its emissions report, the United Nations Environment Programme (UNEP) calculates that scenarios with a “likely” chance of meeting the 2°C target have net negative total greenhouse emissions. To achieve this result, these scenarios assume utilization of carbon capture and storage, a CDR technology. UNITED NATIONS ENVIRONMENT PROGRAMME, THE EMISSIONS GAP REPORT 3 (2012).


46 GAO CLIMATE CHANGE REPORT, supra note 40, at 4.


47 U.S. CONST. art. I, § 8, cl. 8.


48 Benjamin K. Sovacool, Placing a Glove on the Invisible Hand: How Intellectual Property Rights May Impede Innovation in Energy Research and Development (R&D), 18 ALB. L.J. SCI. & TECH. 381, 385 (2008). Under the Patent Act, a board consisting of the Secretaries of State and War and the Attorney General would consider all patent applications. Id.


49 Jesse S. Chui, To What Extent Can Congress Change the Patent Right Without Effecting a Taking?, 34 HASTINGS CONST. L.Q. 447, 448 (2007).


50 Caitlin E. Lanning, Mapping Our Future: The Impact of Gene Patents on Scientific Research and Health Care in the United States, 26 J.L. & HEALTH 375, 397 (2013).


51 Id. at 401.


52 35 U.S.C. § 111(a)(1) (2012).


53 Michael A. Carrier, Post-Grant Opposition: A Proposal and a Comparison to the America Invents Act, 45 U.C. DAVIS L. REV. 103, 106 (2011). 54 Id.


55 Gregory N. Mandel, Promoting Environmental Innovation with Intellectual Property Innovation: A New Basis for Patent Rewards, 24 TEMP. ENVTL. L. & TECH. J. 51, 61 (2005).


56 Patent Time Frame: How Long Does It Take to Get a Patent?, UNIV. CAL. SANTA BARBARA OFFICE OF TECH. & INDUS. ALLIANCES, http://tia.ucsb.edu/faculty/information-resources/patent-basics/ (last visited Sept. 14, 2014).


57 Data Visualization Center, USPTO, http://www.uspto.gov/dashboards/patents/main.dashxml (last visited July 28, 2013).


58 See Emilie Winckel, Hardly a Black-and-White Matter: Analyzing the Validity and Protection of Single-Color Trademarks Within the Fashion Industry, 66 VAND. L. REV. 1015, 1018 n.13 (2013).


59 Mandel, supra note 55, at 61.


60 35 U.S.C. § 271(a) (2012).


61 35 U.S.C. § 154(a)(2) (2012) (stating that the term of the patent lasts from the date on which the patent issues to twenty years after the date on which the inventor filed the application).


62 35 U.S.C. § 112(a) (2012).


63 See Nicholas G. Smith, Medimmune v. Genentech: A Game-Theoretic Analysis of the Supreme Court’s Continued Assault on the Patentee, 15 MARQ. INTELL. PROP. L. REV. 503, 516 (2011).


64 Scott Taylor, Where Are the Green Machines?: Using the Patent System to Encourage Green Invention and Technology Transfer, 23 GEO. INT’L ENVTL. L. REV. 577, 583 (2011).


65 Niels J. Melius, Trolling for Standards: How Courts and the Administrative State Can Help Deter Patent Holdup and Promote Innovation, 15 VAND. J. ENT. & TECH. L. 161, 169 (2012).


66 Sarah Tran, Prioritizing Innovation, 30 WIS. INT’L L.J. 499, 520 (2012).


67 Cf. Michael S. Mireles, An Examination of Patents, Licensing, Research Tools, and the Tragedy of the Anticommons in Biotechnology Innovation, 38 U. MICH. J.L. REFORM 141, 153 (2004).


68 See Taylor, supra note 64, at 583. Commentators recognize an additional benefit known as the “prospect theory.” This refers to the notion that the patent holder can encourage successive inventors to share information and avoid duplicative research. Mireles, supra note 67, at 155.




70 See Joseph A. Yosick, Compulsory Patent Licensing for Efficient Use of Inventions, 2001 U. ILL. L. REV. 1275, 1292 (2001).


71 Search results on file with author [hereinafter Geoengineering Patent Search]. The search used a number of terms associated with climate engineering, including “aerosols,” “albedo,” “biochar,” “carbon,” “capture,” “climate,” “cloud,” “geoengineering,” “global warming,” “inject,” “phytoplankton,” “pyrolysis,” “radiation,” “sequestration,” “solar,” “storage,” and “stratospheric.” Then, the search results were reviewed for relevance.


72 In this discussion, “applications” refers to applications submitted to the USPTO but not yet granted. The USPTO, however, does not report information regarding patent applications received before 2001. See Finding Pre-2001 Applied Not Granted Applications, STACKEXCHANGE, http://patents.stackexchange.com/questions/3368/finding-pre-2001-applied-not-granted-applications (last visited Sept. 14, 2014). Accordingly, this discussion does not incorporate application data from before that year.


73 A recently published review of climate-engineering patents found both similar and inconsistent results to those found in our Geoengineering Patent Search. See Oldham et al., Mapping the Landscape of Climate Engineering, 372 PHIL. TRANSACTIONS ROYAL SOC’Y A, Nov. 17, 2014, at 1–20, available at http://rsta.royalsocietypublishing.org/content/372/2031/20140065. They used fewer search terms, but they performed their search over more databases (those of the USPTO, the European Patent Office, and the Patent Cooperation Treaty). Id. at 3–4. They found that geoengineering patents peaked in 2007, but they acknowledge that this may reflect a lack of data availability in some databases for recent years. Id. at 11. These results conflict with their own findings regarding publications concerning geoengineering, which they found “accelerated” after the publication of a seminal article by Paul Crutzen in 2006. Id. at 5 (citing Paul J. Crutzen, Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma?, 77 CLIMATIC CHANGE 211, 211–12 (2006)); see infra note 89 (discussing the impact of the Crutzen article).


74 Geoengineering Patent Search, supra note 71. Some patents, which this author categorized as carbon sequestration, clearly identified inventions that involved burial, application, or use of captured carbon. Other patents identified inventions that both captured carbon from a source and then provided for its sequestration, which this author treated as carbon-capture patents. See id.


75 Id. The findings of the Oldham et al. search corroborated these general patterns. In their search, they

found that approximately 80% of geoengineering patents involved CDR. Oldham et al., supra note 73, at



76 Common ownership of patents provides a useful indication of patent concentration, but more meaningful approaches may be available. Daniel R. Cahoy notes that just counting patents fails to account for the importance of foundational patents or integrated patent portfolios. No standard methodology exists, however, for such analysis. Daniel R. Cahoy, Inverse Enclosure: Abdicating the Green Technology Landscape, 49 AM. BUS. L.J. 805, 846–47 (2012).


77 Geoengineering Patent Search, supra note 71; see Oldham et al., supra note 73, at 14 (finding geoengineering patents to be held by small networks of inventors associated with particular companies and also by a number of individuals).


78 Geoengineering Patent Search, supra note 71.


79 Another eight patents were assigned equally between Schlumburger Technology Corporation’s Massachusetts and Texas affiliates. If they are treated as one entity, then nine parties control sixty-four (26%) of the patents. Geoengineering Patent Search, supra note 71.


80 U.S. Patent No. 6,056,919 (filed May 4, 1999).


81 See Shobita Parthasarathy et al., A Public Good? Geoengineering and Intellectual Property 5 (Sci. Tech. & Pub. Policy Program, Working Paper No. 10-1, 2010), available at http://www.umt.edu/ethics/ethicsgeoengineering/Workshop/articles1/Chris%20Avery.pdf.


82 U.S. Patent No. 8,603,424 (filed Oct. 11, 2012); see also Oldham et al., supra note 73, at 10 (noting that geoengineering-patent claims “are often deliberately constructed in a broad way . . . to capture the maximum range of possible uses of a claimed invention”).


83 Geoengineering Patent Search, supra note 71.


84 The inventor submitted his application (for using satellites to reflect solar energy to modify the earth’s

atmosphere) on October 8, 1999, and the USPTO granted it as Patent 6,045,089 on April 4, 2000. U.S. Patent No. 6,045,089 (filed Oct. 8, 1999).


85 In the first instance, the inventors submitted their application (for a lime-based sorbent to capture CO2) on November 14, 2003, and the USPTO granted it as Patent 7,879,139 on February 1, 2011. U.S. Patent No. 7,879,139 (filed Nov. 14, 2003). In the second case, the inventor submitted his application (for a process for removing CO2 from gaseous streams) on March 4, 2004, and the USPTO granted it as Patent 7,901,487 on March 8, 2011. U.S. Patent No. 7,901,487 (filed Mar. 4, 2004).


86 U.S. Patent Statistics Summary Table, Calendar Years 1963 to 2012, USPTO, http://www.uspto.gov/ web/offices/ac/ido/oeip/taf/us_stat.htm (last modified July 24, 2014, 6:22 PM).


87 Brian H. Lawrence, Clarifying Patent Law’s Role in Financial Service: Time to Settle the “Bill”ski?, 22 FED. CIR. B.J. 319, 341 n.180 (2012).


88 Mark A. Lemley, Patenting Nanotechnology, 58 STAN. L. REV. 601, 606 (2005). Professor Lemley notes that the building blocks of several recent industries, such as computer hardware, software, the Internet, and biotechnology, were “either unpatented, through mistake or because they were created by government or university scientists with no interest in patents, or the patents presented no obstacle because the government compelled licensing of the patents, or they were ultimately invalidated.” Id. In other fields, including lasers, semiconductors, and polymer chemistry, “basic building-block patents did issue, but they were delayed so long in interference proceedings that the industry developed in the absence of enforceable patents.” Id. at 606–07.


89 See Wylie A. Carr et al., Public Engagement on Solar Radiation Management and Why It Needs to Happen Now, 121 CLIMATIC CHANGE 567, 568 (2013). Although the concept of intentionally altering the climate had been discussed previously, a 2006 article by Paul J. Crutzen, a Nobel Laureate, is credited with triggering serious consideration of climate engineering as a response to climate change. Id.; see Crutzen, supra note 73, at 211–12.


90 See Anthony E. Chavez, A Napoleonic Approach to Climate Change: The Geoengineering Branch, WASH. & LEE J. CLIMATE & ENV’T 93, 123 (2014).


91 Parthasarathy et al., supra note 81, at 5.


92 See Amber Rose Stiles, Hacking Through the Thicket: A Proposed Patent Pooling Solution to the Nanotechnology “Building Block” Patent Thicket Problem, 4 DREXEL L. REV. 555, 561–62 (2012).


93 See Cressey, supra note 3.


94 John C. Miller & Drew L. Harris, The Carbon Nanotube Patent Landscape, 3 NANOTECHNOLOGY L. & BUS. 427, 435 (2006).


95 See Stiles, supra note 92, at 561–62.


96 Id. at 563.


97 See Amit Makker, The Nanotechnology Patent Thicket and the Path to Commercialization, 84 S. CAL. L. REV. 1163, 1182 (2011).


98 Id.


99 See Lemley, supra note 88, at 618–19.


100 See Samuel Reger, It’s Not So Obvious: How the Manifestly Evident Standard Affects Litigation Costs by Reducing the Need for Claim Construction, 1 TEX. A&M L. REV. 729, 732 (2014).


101 See Nikola L. Datzov, The Machine-or-Transformation Patentability Test: The Reinvention of Innovation, 33 HAMLINE L. REV. 281, 292 (2010) (explaining that innovators may avoid the market

because of fears of litigation).


102 Lemley, supra note 88, at 620.


103 Dan L. Burk & Mark A. Lemley, Policy Levers in Patent Law, 89 VA. L. REV. 1575, 1614 (2003).


104 Dana Beldiman, Patent Choke Points in the Influenza-Related Medicines Industry: Can Patent Pools Provide Balanced Access?, 15 TUL. J. TECH. & INTELL. PROP. 31, 46 (2012) (footnote omitted)(internal quotation marks omitted).


105 Burk & Lemley, supra note 103, at 1627.


106 Although the material commonly mentioned is sulfur, scientists are exploring alternative materials, such as titanium dioxide, which has high reflectivity, well-researched safety, and significant availability. Peter Davidson, Chris Burgoyne, Hugh Hunt & Matt Causier, Lifting Options for Stratospheric Aerosol Geoengineering: Advantages of Tethered Balloon Systems, 370 PHIL. TRANSACTIONS ROYAL SOC’Y A 4263, 4266 (2012).


107 Burk & Lemley, supra note 103, at 1628 (discussing patent thickets and the semiconductor industry). Burk and Lemley and others point to semiconductors as an example of an end-product consisting of different components covered by overlapping patents. They also involve cumulative technologies. For semiconductors, cross licensing avoids patent interference. By contrast, in the chemical and pharmaceutical industries, cross licensing primarily enables the exchange of technologies. DAVID J. TEECE, ESSAYS IN TECHNOLOGY MANAGEMENT AND POLICY: SELECTED PAPERS OF DAVID J. TEECE 206 (2003).


108 Makker, supra note 97, at 1175.


109 See Stiles, supra note 92, at 559 (noting that overlapping building-block patents have deterred many prospective inventors from proceeding with innovation plans).


110 See Burk & Lemley, supra note 103, at 1629.


111 D. Theodore Rave, Governing the Anticommons in Aggregate Litigation, 66 VAND. L. REV. 1183, 1190 (2013).


112 See Harry First, Controlling the Intellectual Property Grab: Protect Innovation, Not Innovators, 38 RUTGERS L.J. 365, 382–83 (2007).


113 Id. at 382; Michael A. Heller & Rebecca S. Eisenberg, Can Patents Deter Innovation? The Anticommons in Biomedical Research, SCIENCE, May 1, 1998, at 698.



114 Burk & Lemley, supra note 103, at 1611.


115 Heller & Eisenberg, supra note 113, at 698. In eBay Inc. v. MercExchange L.L.C., the Supreme Court held that a plaintiff in a patent enforcement action must establish that monetary damages would not be adequate to compensate for its injury before receiving the relief of a permanent injunction. 547 U.S. 388, 391–92 (2006). Nevertheless, decisions of the Federal Circuit may limit the ability of this decision to prevent patent holdups. DAN L. BURK & MARK A. LEMLEY, THE PATENT CRISIS AND HOW THE COURTS CAN SOLVE IT 30 (2009) (noting that a Federal Circuit decision allowing patentees to obtain up to fiftytimes actual damages may effectively serve as an injunction).


116 See Heller & Eisenberg, supra note 113, at 700.


117 See First, supra note 112, at 382.


118 Id. This assumes that these negotiations proceed relatively smoothly. In some instances, patent owners refuse to license their inventions, id., or become holdouts, agreeing to license only if they receive excessive licenses. Burk & Lemley, supra note 103, at 1611.


119 Carl Shapiro, Navigating the Patent Thicket: Cross Licenses, Patent Pools, and Standard Setting, 1 INNOVATION POL’Y & ECON. 119, 124 (2000).


120 Burk & Lemley, supra note 103, at 1614.


121 Id. at 1612–13.


122 See id. at 1613.


123 See Beldiman, supra note 104, at 47 (noting the presence of both thickets and anticommons in the influenza-related medicines market).


124 “Patent backlogs hinder the deployment of innovation and have clear adverse effects on the global economy.” USPTO and UKIPO Announce Action Plan to Reduce Global Patent Backlogs, USPTO (Mar. 10, 2010), http://www.uspto.gov/news/pr/2010/10_09.jsp.


125 See Patent Time Frame: How Long Does It Take to Get a Patent?, supra note 56.



126 See Winckel, supra note 58, at 1018 n.13.


127 See Tran, supra note 66, at 520.


128 ROYAL SOC’Y, supra note 34, at 52.


129 See Timothy A. Fox & Lee Chapman, Review: Engineering Geo-Engineering, 18 METEOROLOGICAL APPLICATIONS 1, 6 (2011).


130 See Joshua D. Sarnoff, The Patent System and Climate Change, 16 VA. J.L. & TECH. 301, 338 (2011) (noting that patent protection may delay climate-change-related discoveries and their development).


131 Based upon the IPCC’s Fifth Assessment Report, a tipping point may be only twenty-five years away. Barboza, supra note 8. Holding global warming to an increase of less than 2°C, on the other hand, may soon be impossible within half of that time. Stockey, supra note 19, at 281.


132 See Fox & Chapman, supra note 129, at 6.


133 Because of the global consequences of implementing geoengineering, we can anticipate that international agreements will eventually govern its implementation, if not also its testing. KELSI BRACMORT & RICHARD K. LATTANZIO, GEOENGINEERING: GOVERNANCE AND TECHNOLOGY POLICY 29 (2013). Moreover, such agreements are likely to impose moratoriums on implementation absent international consent. For instance, the parties to the Convention on Biological Diversity have already imposed such a moratorium. Chavez, supra note 90, at 146–47. Thus, because of these considerations, the “consumer” of climate-engineering products will likely be an intergovernmental agency. See also Paul Nightingale & Rose Cairns, The Security Implications of Geoengineering: Blame, Imposed Agreement and the Security of Critical Infrastructure 9–10 (CGG Working Papers, Paper No. 18, 2014), available at http://www.climateengineering.eu/single/items/nightingale-paul-cairns-rose-c-2014-the-security-implications-ofgeoengineering- blame-imposed-agreement-and-the-security-of-crit.html (arguing that, because of security concerns, SRM technologies would likely be operated by the military).


134 See Mfrs. Aircraft Ass’n, Inc. v. United States, 77 Ct. Cl. 481, 488 (Ct. Cl. 1933) (noting that the U.S. government threatened to condemn aviation patents to facilitate airplane manufacturing).


135 BRACMORT & LATTANZIO, supra note 133, at i.


136 The recent Stratospheric Particle Injection for Climate Engineering (SPICE) Project was “one of the first large SRM research projects anywhere in the world, and the first to propose an outdoor experiment.” Jack Stilgoe, Matthew Watson & Kirsty Kuo, Public Engagement with Biotechnologies Offers Lessons for the Governance of Geoengineering Research and Beyond, PLOS BIOLOGY, Nov. 2013, at 1, 2. The experimenters cancelled the field-test over a patent dispute. Cressey, supra note 3, at 429.


137 See Burk & Lemley, supra note 103, at 1613.


138 See U.S. Patent Statistics Chart, Calendar Years 1963–2012, USPTO, http://www.uspto.gov/web/offices/ac/ido/oeip/taf/us_stat.htm (last visited Sept. 14, 2014).


139 35 U.S.C. § 181 (2012).


140 42 U.S.C. § 2181 (2012).


141 See 35 U.S.C. § 181. Specifically, the Commissioner shall provide the patent to the Atomic Energy Commission, the Secretary of Defense, and the chief officer of any other department or agency designated by the President as a defense agency of the United States. Id.


142 S. Scott Pershern, Taking Inventors’ Lunch Money: Provide Incentives for Sensitive Technology Research Under the Patriot Act, 29 HOUS. J. INT’L L. 697, 702 (2007).


143 35 U.S.C. § 183 (2012).


144 42 U.S.C. § 2187.


145 42 U.S.C. § 2181(a).


146 See CNA CORP., NATIONAL SECURITY AND THE THREAT OF CLIMATE CHANGE 6 (2007). Among these concerns are food and water security, famine and food scarcity, health security, disruptive migration events, political instability, and international conflict. NAT’L RESEARCH COUNCIL, ABRUPT IMPACTS OF CLIMATE CHANGE: ANTICIPATING SURPRISES 146 (2013).


147 For instance, most aerosol-based SRM methods would alter the globe’s precipitation patterns. John

Latham et al., Marine Cloud Brightening, 370 PHIL. TRANSACTIONS ROYAL SOC’Y A 4217, 4223 (2012). If SRM does cool the planet, the system could be turned off but only at a price—scientists have determined that the climate would return to its pre-cooled temperature, but the temperature would rise at such a rapid rate that it might endanger many species. Kelly E. McCusker et al., Rapid and Extensive Warming Following Cessation of Solar Radiation Management, 9 ENVTL. RES. LETTERS 24005, 24005 (2014). Similarly, CDR methods also involve risk. For example, stored carbon could escape and reenter the atmosphere. Bob van der Zwaan & Koen Smekens, CO2 Capture and Storage with Leakage in an Energy- Climate Model, 14 ENV’T MODEL ASSESS. 135, 135 (2009).


148 See Beldiman, supra note 104, at 49.


149 See also id.


150 See infra Part V.B. 151 42 U.S.C. § 2457(a) (2006) (repealed 2010).


152 See BRACMORT & LATTANZIO, supra note 133, at 36 (noting that because engineering the climate system is a global activity with trans-boundary effects, some suggest that only a multilateral body is appropriate in addressing it).


153 Geoengineering Patent Search, supra note 71.


154 35 U.S.C. § 302 (2012).


155 Lanning, supra note 50, at 403.


156 Id.


157 35 U.S.C. § 311(b) (2012).


158 See Stiles, supra note 92, at 570. While one analysis found reexamination costs total approximately one-tenth of the cost of litigation, they still could range as high as $100,000. Additional drawbacks are a limited role for the challenger during the reexamination process and probable juror bias against a party whose reexamination request failed. Stuart J. H. Graham et al., Patent Quality Control: A Comparison of U.S. Patent Reexaminations and European Patent Oppositions, in PATENTS IN THE KNOWLEDGE-BASED ECONOMY: PROCEEDINGS OF THE SCIENCE, TECHNOLOGY AND ECONOMIC POLICY BOARD 8 (Wesley M. Cohen & Stephen A. Merrill eds.,  2003), available at http://www.nber.org/papers/w8807.


159 35 U.S.C. § 303(a) (2012).


160 See 37 C.F.R. § 1.520 (2012).


161 450 U.S. 175, 185–86 (1981).


162 See Lori B. Andrews, Genes and Patent Policy: Rethinking Intellectual Property Rights, 3 NATURE REVS. GENETICS 803, 805 (2002).


163 42 U.S.C. § 2013 (2012). The legislative history of the Atomic Energy Act indicates that Congress concluded that the processing and use of fissionable material must be regulated to promote the national interest and to protect public health and safety. Michael Moulton, Effecting the Impossible: An Argument Against Tax Strategy Patents, 81 S. CAL. L. REV. 631, 665 (2008).


164 N.V. Philips’ Gloeilampenfabrieken v. Atomic Energy Comm’n, 316 F.2d 401, 405 (D.C. Cir. 1963).


165 See Andrew W. Torrance, Patents to the Rescue: Disasters and Patent Law, 10 DEPAUL J. HEALTH CARE L. 309, 341 (2007) [hereinafter Torrance, Patents to the Rescue].


166 Id.


167 Id. at 336.


168 Id.


169 See Simone A. Rose, On Purple Pills, Stem Cells, and Other Market Failures: A Case for a Limited Compulsory Licensing Scheme for Patent Property, 48 HOW. L.J. 579, 619 (2005).


170 See Mandel, supra note 55, at 59.


171 See, e.g., Richard Bis, Financing Innovation: A Project Finance Approach to Funding Patentable Innovation, 21 INTELL. PROP. & TECH. L.J. 14, 20 (2009).


172 See, e.g., Richard Li-dar Wang, Biomedical Upstream Patenting and Scientific Research: The Case for Compulsory Licenses Bearing Reach-Through Royalties, 10 YALE J.L. & TECH. 251 (2008).


173 Rose, supra note 169, at 621–22.


174 Dawson Chem. Co. v. Rohm & Haas Co., 448 U.S. 176, 215 (1980).


175 Kimberly M. Thomas, Protecting Academic and Non-Profit Research: Creating a Compulsory Licensing Provision in the Absence of an Experimental Use Exception, 23 SANTA CLARA COMPUTER & HIGH TECH. L.J. 347, 356 (2007). Indeed, a congressional representative once charged that compulsory licenses are both unconstitutional and un-American. Stefan A. Risenfeld, Compulsory Licenses and United States Industrial and Artistic Property Law, 47 CAL. L. REV. 51, 51–52 (1959).


176 See United States v. Glaxo Grp. Ltd., 410 U.S. 52, 71 n.5 (1973) (Rehnquist, J., dissenting).


177 See Carol M. Nielsen & Michael R. Samardzjia, Compulsory Patent Licensing: Is It a Viable Solution in the United States?, 13 MICH. TELECOMM. & TECH. L. REV. 509, 535–36 (2007).


178 See Yosick, supra note 70, at 1281.


179 Foster v. Am. Mach. & Foundry Co., 492 F.2d 1317, 1324 (2d Cir. 1974).


180 See Yosick, supra note 70, at 1281.


181 See Smith Int’l., Inc. v. Hughes Tool Co., 718 F.2d 1573, 1581 (Fed. Cir. 1983) (granting a preliminary injunction against infringement as consistent with the public policy underlying the patent laws).


182 TEECE, supra note 107, at 209.


183 Id. at 211.


184 See id. at 212–13. IBM noted that this relatively open licensing helped accelerate the pace of innovation because it facilitated the work of others and access to their results. In fact, IBM considered access to others’ patents to be more valuable than the royalties it could have earned on the licensing of its 9,000 patents. Id. at 212.


185 Chui, supra note 49, at 462.


186 See Dawson Chem. Co. v. Rohm & Haas Co., 448 U.S. 176, 215 n.21 (1980).


187 Andrew W. Torrance, Patent Law, Hippo, and the Biodiversity Crisis, 9 J. MARSHALL REV. INTELL. PROP. L. 624, 648 (2010).


188 Rose, supra note 169, at 621. Congress rejected compulsory license provisions in other legislation, including the 1973 Hart Bill and the 1999 Affordable Prescription Drugs Act. Yosick, supra note 70, at


1278. The Hart Bill would have permitted compulsory licenses of patents related to “public health, safety, or protection of the environment” or for patents that are unused. Id. The Affordable Prescription Drugs Act would have required compulsory licenses of patents relating to human health under certain circumstances. Id.


189 See Kenneth J. Nunnenkamp, Compulsory Licensing of Critical Patents Under CERCLA?, 9 J. NAT. RES. & ENVTL. L. 397, 404 (1994).


190 See id.


191 Despite their relative rarity in U.S. patent law, compulsory licenses are actually commonplace under U.S. copyright law. See Jorge L. Contreras, Standards, Patents, and the National Smart Grid, 32 PACE L. REV. 641, 672 (2012).


192 16 U.S.C. § 831 (2012).


193 7 U.S.C. § 2404 (2012).


194 17 U.S.C. § 901(a) (2012).


195 42 U.S.C. § 2183(d) (2012).


196 42 U.S.C. § 2183(a).


197 42 U.S.C. § 2183(b).



198 Id.


199 42 U.S.C. § 2183(e)(4).


200 42 U.S.C. § 2183(g).


201 42 U.S.C. § 7401(a)(3) (2012).


202 See Warren F. Schwartz, Mandatory Patent Licensing of Air Pollution Control Technology, 57 VA. L. REV. 719, 719 (1971).


203 Torrance, supra note 187, at 648–49.


204 The Clean Air Act requires a party to satisfy three requirements to obtain a license. First, the patented technology is not “reasonably available” yet “necessary” to comply with an air-quality standard; second, “no reasonable alternative methods” exist; and third, the unavailability of such technology may cause a “substantial lessening of competition.” 42 U.S.C. § 7608 (2012). 205 Id. Congress approved § 7608 with little controversy in 1970, Nunnenkamp, supra note 189, at 405–06, but an effort arose subsequently to repeal the provision. Id. at 406 n.39. Nevertheless, by 1977, when Congress “completely revised” the Clean Air Act, the provision remained. Id. at 406.


206 Yosick, supra note 70, at 1279.


207 See 28 U.S.C. § 1498(a) (2012).


208 See Motorola, Inc. v. United States., 729 F.2d 765, 768 (Fed. Cir. 1984). The statute entitles the patent holder to a reasonable royalty. 28 U.S.C. § 1498(a). Because the government has the right to use patented inventions for the public good, infringement by the government is treated as an exercise of eminent domain, rather than tortious conduct, as would be the case with private litigants. B.E. Meyers & Co. v. United States, 47 Fed. Cl. 375, 380 (2000).


209 See Coakwell v. United States, 372 F.2d 508, 511 (Ct. Cl. 1967).


210 See Nunnenkamp, supra note 189, at 403.



211 Thomas, supra note 175, at 365.


212 Terry K. Tullis, Comment, Application of the Government License Defense to Federally Funded Nanotechnology Research: The Case for a Limited Patent Compulsory Licensing Regime, 53 UCLA L. REV. 279, 303–04 (2005). At the time, the government funded 60% of all academic research. Innovation’s Golden Goose, ECONOMIST (Dec. 12, 2002), http://www.economist.com/node/1476653. Despite this investment, only 5% of federally funded inventions led to commercial applications. Tullis, supra at 304 n.97.


213 See 35 U.S.C. § 200 (2012).


214 35 U.S.C. § 202(a) (2012). The United States also retains a royalty-free license for it or any of its contractors to practice the invention. Id. § 202(c)(4). 215 Id. § 202(a).


216 See Vicki Loise & Ashley J. Stevens, The Bayh-Dole Act Turns 30, 45 LES NOUVELLES 185, 188 (2010).


217 35 U.S.C. § 203(a) (2012).


218 Thomas, supra note 175, at 366.


219 35 U.S.C. § 203(a)(2). Additional circumstances include overcoming a failure to apply the invention, § 203(a)(1), meeting requirements of federal regulations for public use, § 203(a)(3), or addressing a breach of the agreement, § 203(a)(4). Administrative and federal court appeals processes further restrict these rights for adversely affected inventors and licensees. § 203(b).


220 As of 1997, the United States had never utilized its march-in rights. Mary Eberle, March-In Rights Under the Bayh-Dole Act: Public Access to Federally Funded Research, 3 MARQ. INTELL. PROP. L. REV.


155, 160 n.38 (1999). For instance, as of 2012, the National Institutes of Health (NIH) had yet to grant a petition for a license. Kevin E. Noonan, Groups Petition for NIH Exercise of March-In Rights over Abbott Laboratories’ Norvir®, PATENT DOCS (Oct. 31, 2012), http://www.patentdocs.org/2012/11/groups-petitionfornih-exercise-of-march-in-rights-over-abbott-laboratories-norvir.html.


221 Sarnoff, supra note 130, at 355. Mr. Sarnoff believes that this resistance could be alleviated through

greater clarity concerning the criteria and circumstances giving rise to the exercise of march-in rights. Id. A related approach that might better encourage the extension of licenses comes from California. In 2004, the Golden State’s voters approved the California Stem Cell Research and Cures Initiative. Andrew T. Serafini & Gene H. Yee, IP Provisions and ROI for State-Funded Stem-Cell-Based Products and Technologies in California, 24 INTELL. PROP. & TECH. L.J. 3, 3 (2012). It requires grantee organizations to negotiate nonexclusive licenses of funded inventions “whenever possible.” CAL. CODE REGS. tit. 17, § 100306(b) (2014).


222 Thomas, supra note 175, at 359.


223 Id.


224 Torrance, supra note 187, at 648.


225 Included within this category are national security, national defense, considerable public interests,

protection of natural environment, etc. WORLD INTELLECTUAL PROP. ORG., SURVEY ON COMPULSORY LICENSES GRANTED BY WIPO MEMBER STATES TO ADDRESS ANTI-COMPETITIVE USES OF INTELLECTUAL PROPERTY RIGHTS 7 (2011). The twenty-two countries were Algeria, Azerbaijan, Belgium, the Czech Republic, Finland, Ireland, Japan, Kenya, Mexico, Lithuania, Nicaragua, Norway, Oman, Panama, Poland, Spain, Sweden, Trinidad and Tobago, the United Kingdom, Ukraine, Uruguay, and Uzbekistan. Id.


226 Id. These countries are Belgium, France, Hungary, Kenya, Mexico, Lithuania, Oman, Panama, Poland, Trinidad and Tobago, and Ukraine. Id.


227 See Yosick, supra note 70, at 1294.


228 See Jason D. Ferrone, Compulsory Licensing During Public Health Crises: Bioterrorism’s Mark on Global Pharmaceutical Patent Protection, 26 SUFFOLK TRANSNAT’L L. REV. 385, 402 (2003).


229 Id. at 402–03.


230 Alex Bellos, Roche Bows to Brazil on AIDS Drug, THE GUARDIAN, Sept. 1, 2001.


231 Thomas, supra note 175, at 357–58.


232 Rose, supra note 169, at 622.


233 Id.


234 At one extreme, critics charge that compulsory licenses represent “socialism in disguise.” Rose, supra note 169, at 623.


235 Mandel, supra note 55, at 60.


236 Thomas, supra note 175, at 357. To avoid such concerns, Katherine Strandburg suggests that, after a patent is granted, a moratorium be imposed before a compulsory license can be exercised. Katherine J. Strandburg, What Does the Public Get?: Experimental Use and the Patent Bargain, 2004 WIS. L. REV. 81, 143 (2004).


237 See Nunnenkamp, supra note 189, at 416–17.


238 See Yosick, supra note 70, at 1292.


239 See, e.g., Thomas, supra note 175, at 357.


240 Dawson Chem. Co. v. Rohm & Haas Co., 448 U.S. 176, 215 (1980).


241 See Mandel, supra note 55, at 59.


242 Sovacool, supra note 48, at 433.


243 Nielsen & Samardzjia, supra note 177, at 530. This structure is typical, especially of some of the more prominent patent pools discussed infra. In some instances, however, the patent owners merely license their patents to one another. Different forms may reflect the different goals of the pool, such as upstream research and development or downstream access. Krista L. Cox, The Medicines Patent Pool: Promoting Access and Innovation for Life-Saving Medicines Through Voluntary Licenses, 4 HASTINGS SCI. & TECH. L. J. 291, 294–95 (2012).


244 Cox, supra note 243, at 295.


245 See Contreras, supra note 191, at 674–75.


246 Id. at 655.


247 See JEANNE CLARK ET AL., USPTO, PATENT POOLS: A SOLUTION TO THE PROBLEM OF ACCESS IN BIOTECHNOLOGY PATENTS? 4 (2000), available at www.uspto.gov/web/offices/pac/dapp/opla/patentpool.pdf .


248 Lanning, supra note 50, at 412. Other recognized benefits include reducing licensing costs (including reducing) and managing and administering the agreement and parties. Cox, supra note 243, at 295.






251 Mfrs. Aircraft Ass’n, Inc. v. United States, 77 Ct. Cl. 481, 483 (Ct. Cl. 1933).


252 ALBRIGHT, supra note 250. At the commencement of hostilities, France had manufactured 2,000 airplanes, Germany 1,000, and the United States fewer than 100. Id.


253 Contreras, supra note 191, at 675 n.137.


254 Mfrs. Aircraft Ass’n, Inc., 77 Ct. Cl. at 483.


255 Id. at 486. Its founders modeled the MAA after a similar entity formed at the beginning of the century to address comparable issues concerning patents related to automobiles. ALBRIGHT, supra note 250, at 146.


256 Mfrs. Aircraft Ass’n, Inc., 77 Ct. Cl. at 486.


257 ALBRIGHT, supra note 250, at 146. The MAA enabled the Navy to avoid spending an appropriation of $1 million to purchase or condemn basic aeronautic patents. Mfrs. Aircraft Ass’n, Inc., 77 Ct. Cl. at 488.


258 Mfrs. Aircraft Ass’n, Inc., 77 Ct. Cl. at 502.



259 ALBRIGHT, supra note 250, at 146.


260 Cox, supra note 243, at 296.


261 Jorge Bermudez & Ellen ‘t Hoen, The UNITAID Patent Pool Initiative: Bringing Patents Together for the Common Good, 4 OPEN AIDS J. 37, 37 (2010). The MPP receives its financing from a tax on airline tickets established by the participating member countries. Id.


262 See id. at 38.


263 Cox, supra note 243, at 296.


264 Id. at 296–97.


265 Id. at 303–04.






268 Mireles, supra note 67, at 220–21. The Radio Corporation of America (RCA), which combined several companies’ technologies, led to the standardizing of radio and television parts and transmissions. Prior to the formation of RCA, a number of separate entities held important patents, enabling them to block one another. Moreover, radio systems required several technologies, each of which involved multiple patents. Accordingly, the industry was deadlocked. Once again, the parties resolved their differences after prompting from the Navy Department. See TEECE, supra note 107, at 207.


269 Contreras, supra note 191, at 674–75. Recent examples include patent pools formed for CDs, DVDs, Bluetooth, and MPEG. Id.


270 Stiles, supra note 92, at 576.


271 Although the MAA was technically a voluntary patent pool, many commentators consider it to have been a de facto mandatory patent pool. See Contreras, supra note 191, at 675 n.137. If necessary, the United States had contemplated exercising its eminent domain powers to acquire the necessary patents. SERAFINO, supra note 267, at 16.


272 CLARK ET AL., supra note 247, at 8.


273 Id.


274 Nielsen & Samardzjia, supra note 177, at 530.


275 Stiles, supra note 92, at 587.


276 CLARK ET AL., supra note 247, at 9. Patent pools also reduce the likelihood that, after licenses have been acquired on all but a few patents for a technology, the remaining patent holders can hold out to force above-market rates for their patents. Id.


277 See Mireles, supra note 67, at 220.


278 Nielsen & Samardzjia, supra note 177, at 530–31.


279 Mireles, supra note 67, at 218.


280 See id. at 219.


281 See CLARK ET AL., supra note 247, at 10. They also note that some commentators have argued that patent pools can be used to shield invalid patents, thereby allowing the charging of royalties on patents that should be in the public domain. The authors also believe that this also should be avoidable through careful review of the pooling arrangement. Id.


282 See Deborah Behles, The New Race: Speeding up Climate Change Innovation, 11 N.C. J. L. & TECH. 1, 41 (2009). Ms. Behles points to the experience under the Orphan Drug Act. The Food and Drug Administration established the Office of Orphan Products Development to review applications and award orphan designations. OFFICE OF INSPECTOR GEN., THE ORPHAN DRUG ACT: IMPLEMENTATION AND IMPACT 4 (2001), available at oig.hhs.gov/oei/reports/oei-09-00-00380.pdf . The office has reduced the time required to designate a product by 40%. Id. at 10–11.


283 Included under this heading are methods such as carbon capture and sequestration, ocean fertilization, aerosol injection, enhanced ocean circulation, cloud whitening, enhanced surface albedo, space mirrors, and others. BRACMORT & LATTANZIO, supra note 133, at 10–19.


284 See Oldham et al., supra note 73, at 9. They reported that their search terms “generated unexpected noise” and the results were “diffuse.” Id.


285 Tran, supra note 66, at 526. The implementation of the GTPP followed the adoption of similarprograms in Australia, Japan, South Korea, and the United Kingdom. Id. at 525–26.


286 Pilot Program for Green Techs Including Greenhouse Gas Reduction, 74 Fed. Reg. 64,666, 64,666 (Dep’t of Commerce Dec. 8, 2009). Most importantly, the GTPP did not require the applicant to conduct a pre-examination search for prior art. Jay Hickey, Green Technology: An Alternative Path to Accelerated Patent Examination, 62 SYRACUSE L. REV. 145, 151 (2012).


287 Tran, supra note 66, at 529–30.


288 Id. at 530.


289 See Mandel, supra note 55, at 61.


290 See, e.g., Joughlin, Smith & Medley, supra note 14, at 738.


291 See Tran, supra note 66, at 522–23.


292 Lawrence A. Stahl & Seth E. Boeshore, Accelerating the Acquisition of an Enforceable Patent: Bypassing the PTO’s Backlog, 23 INTELL. PROP. & TECH. L.J. 3, 5 (2011).


293 Mireles, supra note 67, at 231.


294 Lanning, supra note 50, at 410.


295 Id.


296 Mfrs. Aircraft Ass’n, Inc. v. United States, 77 Ct. Cl. 481, 488 (Ct. Cl. 1933).


297 See Contreras, supra note 191, at 674–75.


298 CLARK ET AL., supra note 247, at 9.


299 Beldiman, supra note 104, at 59.


300 See id. at 57–58 (noting that the establishment of a pool concerning severe acute respiratory syndrome (SARS) helped to remove barriers that were discouraging investment).


301 Id. at 59.


302 Shanshan Zhang, Proposing Resolutions to the Insufficient Gene Patent System, 20 SANTA CLARA COMPUTER & HIGH TECH. L.J. 1139, 1167–68 (2004). Besides determining the inventory in the pool’s

portfolio, an administrator would also collect and distribute royalties and enforce and terminate licenses. Id. at 1168.


303 See BRACMORT & LATTANZIO, supra note 133, at 10–19.


304 See Beldiman, supra note 104, at 56 (noting that although electronics-industry pools narrowed membership to “essential” patents, such a limitation in a younger field may be counterproductive because relations among patents may still be undefined).


305 Cox, supra note 243, at 309–10.


306 First, supra note 112, at 382.



307 Cox, supra note 243, at 310.


308 A “field-of-use” license permits licensees to use a patent but only for certain purposes. Mark R. Patterson, Must Licenses Be Contracts?: Consent and Notice in Intellectual Property, 40 FLA. ST. U. L. REV. 105, 105 (2012). The Federal Circuit upheld such conditions of patent grants. Mallinckrodt, Inc. v. Medipart, Inc., 976 F.2d 700, 708 (Fed. Cir. 1992).


309 The following provide a few examples: Patent 8,603,424 pertains to the development of formed building materials composed of sequestered carbon which can be used in construction processes; Patent 8,507,253 provides for the development of photosynthetic organisms to be used in bioreactors both to sequester carbon and to generate fuel; Patent 6,045,089 pertains to a solar-powered airplane, one application of which is intended to be weather modification.


310 See TEECE, supra note 107, at 212.


311 Torrance, Patents to the Rescue, supra note 165, at 342.


312 35 U.S.C. § 203(a) (2012).


313 Nunnenkamp, supra note 189, at 404.


314 Thomas, supra note 175, at 359.


315 Torrance, supra note 187, at 648.


316 Thomas, supra note 175, at 359.


317 See Nielsen & Samardzjia, supra note 177, at 538 (recommending that compulsory licenses be granted not as a matter of course but where public interest factors outweigh the patent holder’s property interest).


Ein künstliches Klima durch SRM Geo-Engineering



 Sogenannte "Chemtrails"     sind SRM Geoengineering-   Forschungs-Experimente


 Illegale Feldversuche der   SRM Technik, weltweit.



Illegale militärische und zivile GE-Forschungen finden in einer rechtlichen Grauzone statt.


Feldversuche oder illegale SRM Interventionen wurden nie in nur einem einzigen Land der Welt,  je durch ein Parlament gebracht, deshalb sind sie nicht legalisiert und finden in einer rechtlichen Grauzone der Forschung statt. Regierungen wissen genau, dass sie diese Risiko-Forschung, die absichtliche Veränderung mit dem Wetter nie durch die Parlamente bekommen würden..


HAARP - Die Büchse der Pandora in militärischen Händen



Illegale zivile und militärische SRM Experimente finden 7 Tage die Woche (nonstop) rund um die Uhr statt. 


Auch Nachts - trotz Nacht-



Geo-Engineering Forschung


Wissenschaftler planen 10 bis 100 Megatonnen hoch toxischer Materialien wie Aluminium, synthetischen Nanopartikeln jedes Jahr in unserer Atmosphäre auszubringen.


Die Mengenangaben von SRM Materialien werden neuerdings fast immer in Teragramm berechnet. 


  1 Teragramm  = 1 Megatonne

  1 Megatonne  = 1 Million Tonnen



SAI = Stratosphärische

Aerosol Injektionen mit toxischen Materialen wie:


  • Aluminiumoxide
  • Black Carbon 
  • Zinkoxid 
  • Siliciumkarbit
  • Diamant
  • Bariumtitanat
  • Bariumsalze
  • Strontium
  • Sulfate
  • Schwefelsäure 
  • Schwefelwasserstoff
  • Carbonylsulfid
  • Ruß-Aerosole
  • Schwefeldioxid
  • Dimethylsulfit
  • Titan
  • Lithium
  • Lithiumsalze
  • Kohlenstoff Flugasche 
  • Kalkstaub
  • Titandioxid
  • Natriumchlorid
  • Meersalz 
  • Calciumcarbonat
  • Siliciumdioxid
  • Silicium
  • Bismuttriiodid (BiI3
  • Polymere
  • Polymorph von TiO2
  • Dialektrika:
  • Sulfate
  • Halogenide und
  • Kohlenstoffverbindungen
  • Halbleiter:
  • Indiumantimonid (InSb)
  • Bleitellunid (PbTe)
  • Indiumarsen (InAs)
  • Carbonat Aersole
  • Silberjodit, Silberiodit
  • Trockeneis (gefrorenes Kohlendioxid)
  • Hygroskopische Materialien wie Salz,
  • Silanox
  • Cilicagel, Kieselgel
  • Kieselsäure 
  • Syloid65 (Subventionierte Brennstoffmischungen =
  • Chemtrail Chemikalien Mix) aus Patentunterlagen
  • Silberiodit-Kaliumiodit-Komplex
  • Lithium-Silberiodit-Komplex
  • Militär verteilt: Glasfaser-Spreu






Der Wissenschaftler David Keith, der die Geo-Ingenieure Ken Caldeira und Alan Robock in ihrer Arbeit unterstütztsagte auf einem Geo-Engineering - Seminar am 20. Februar 2010, dass sie beschlossen hätten, ihre stratosphärischen Aerosol-Modelle von Schwefel auf Aluminium umzustellen


Niemand auf der ganzen Welt , zumindest keiner der staatlichen Medien berichtete von diesem wichtigen Ereignis.





April 2016 

Aerosol Experiments Using Lithium and Psychoactive Drugs Over Oregon.



SKYGUARDS: Petition an das Europäische Parlament - 2013



Wir haben keine Zeit zu verlieren!




Klage gegen Geo-Engineering und Klimapolitik 


Der Rechtsweg ist vielleicht die einzige Hoffnung, Geo-Engineering-Programme zum Anhalten zu bewegen. Paris und andere Klimaabkommen schaffen Ziele von rechtlich international verbindlichen Vereinbarungen. Wenn sie erfolgreich sind, werden höchstwahrscheinlich SRM-Programme ohne ein ordentliches Gerichtsverfahren legalisiert. Wenn das geschieht, wird das unsere Fähigkeit Geoengineering zu verhindern und jede Form von rechtlichen Maßnahmen zu ergreifen stark behindern.


Ziel dieser Phase ist es, Mittel zu beschaffen um eine US- Klage vorzubereiten. Der Hauptanwalt Wille Tierarzt wählt qualifizierte Juristen aus dem ganzen Land aus, um sicher zu stellen, dass wir Top-Talente sichern, die wir für unser langfristiges Ziel einsetzen.



Die Fakten sind, dass seit einem Jahrzehnt am Himmel illegale Wetter -Änderungs-Programme stattfinden, unter Einsatz des Militärs im Rahmen der NATO, ohne Wissen oder Einwilligung der Bevölkerung..

EU-Konferenz und Petition über Wettermodifizierung und Geoengineering in Verbindung mit HAARP Technologien


Die Zeit ist gekommen. Anonymous wird nicht länger zusehen. Am 23. April werden wir weltweit gegen Chemtrails und Geoengineering friedlich demonstrieren.


Anonymous gegen Geoengineering 



Wir waren die allerletzten Zeit Zeugen eines normalen natürlichen blauen Himmels.





Heute ist der Himmel nicht mehr blau, sondern eher rot oder grau. 



Metapedia –

Die alternative Enzyklopädie








Die neue Enzyklopädie


http://de.allbuch.online/wiki/Chemtrails Chemtrails

http://de.allbuch.online/wiki/GeoEngineering GeoEngineering

http://de.allbuch.online/wiki/HAARP HAARP






SRM - Geoengineering

Aluminium anstatt Schwefeloxid


Im Zuge der American Association for the Advancement of Science (AAAS) Conference 2010, San Diego am 20. Februar 2010, wurde vom kanadischen Geoingenieur David W. Keith (University of Calgary) vorgeschlagen, Aluminium anstatt Schwefeldioxid zu verwenden. Begründet wurde dieser Vorschlag mit 1) einem 4-fach größeren Strahlungsantrieb 2) einem ca. 16-fach geringeren Gerinnungsfaktor. Derselbe Albedoeffekt könnte so mit viel geringeren Mengen Aluminium, anstatt Schwefel, bewerkstelligt werden. [13]


Mehr Beweise als dieses Video braucht man wohl nicht. >>> Aerosol-Injektionen


Das "Geo-Engineering" Klima-Forschungsprogramm der USA wurde direkt dem Weißen Haus unterstellt,

bzw. dort dem White House Office of Science and Technology Policy (OSTP) zugewiesen. 



Diese Empfehlung lassen bereits das Konfliktpotential dieser GE-Forschung erahnen.






In den USA fällt Geo-Engineering unter Sicherheitspolitik und Verteidigungspolitik: 



Geo-Engineering als Sicherheitspolitische Maßnahme..


Ein Bericht der NASA merkt an, eine Katastrophensituation könnte die Entscheidung über SRM maßgeblich erleichtern, dann würden politische und ökonomische Einwände irrelevant sein. Die Abschirmung von Sonnenlicht durch SRM Maßnahmen wäre dann die letzte Möglichkeit, um einen katastrophalen Klimawandel abzuwenden.


maßgeblich erleichtern..????


Nach einer Katastrophensituation sind diese ohnehin illegalen geheimen militärischen SRM Programme wohl noch leichter durch die Parlamente zu bringen unter dem Vorwand der zivilen GE-Forschung. 




Der US-Geheimdienst CIA finanziert mit 630.000 $ für die Jahre   2013/14 

Geoengineering-Studien. Diese Studie wird u.a. auch von zwei anderen staatlichen Stellen NASA und NOAA finanziert. 




Um möglichst keine Spuren zu hinterlassen.. sind wirklich restlos alle Links im Netz entfernt worden. 






Es existieren viele Vorschläge zur technologischen Umsetzung des stratosphärischen Aerosol- Schildes.


Ein Patent aus dem Jahr 1991 behandelt das Einbringen von Aerosolen in die Stratosphäre

(Chang 1991).


Ein neueres Patent behandelt ein Verfahren, in dem Treibstoffzusätze in Verkehrsflugzeugen zum Ausbringen reflektierender Substanzen genutzt werden sollen (Hucko 2009).




Die von Microsoft finanzierte Firma Intellectual Ventures fördert die Entwick­lung eines „Stratoshield“ genannten Verfahrens, bei dem die Aerosolerzeugung in der Strato­sphäre über einen von einem Ballon getragenen Schlauch vom Erdboden aus bewirkt werden soll.


CE-Technologien wirken entweder symptomatisch oder ursächlich


Symptomatisch wirkend: 

Modifikation durch SRM-Geoengineering- Aerosole in der Stratosphäre


Ursächlich wirkend: 

Reduktion der CO2 Konzentration (CDR) 


Effekte verschiedener Wolkentypen


Dicke, tief hängende Wolken reflektieren das Sonnenlicht besonders gut und beeinflussen kaum die Energie, die von der Erde als langwellige Infrarotstrahlung abgegeben wird. Hohe Wolken sind dagegen kälter und meist dünner. Sie lassen daher mehr Sonnenlicht durch, dafür speichern sie anteilig mehr von der langwelligen, abgestrahlten Erdenergie. Um die Erde abzukühlen, sind daher tiefe Wolken das Ziel der Geoingenieure.



Zirruswolken wirken also generell erwärmend (Lee et al. 2009). Werden diese Wolken künstlich aufgelöst oder verändert, so wird sich in der Regel ein kühlender Effekt ergeben.


Nach einem Vorschlag von Mitchell et al.  (2009) könnte dies durch ein Einsäen von effizienten Eiskeimen bei der Wolkenbildung geschehen.



Eiskeime werden nur in sehr geringer Menge benötigt und könnten beispielsweise durch Verkehrs-Flugzeuge an geeigneten Orten ausgebracht werden. Die benötigten Materialmengen liegen dabei im Bereich von einigen kg pro Flug.



Die RQ-4 Global Hawk fliegt etwa in 20 Kilometer Höhe ohne Pilot.

1 - 1,5  Tonnen Nutzlast.


Instead of visualizing a jet full of people, a jet full of poison.



Das Militär hat bereits mehr Flugzeuge als für dieses Geo-Engineering-Szenario erforderlich wären, hergestellt. Da der Klimawandel eine wichtige Frage der nationalen Sicherheit ist [Schwartz und Randall, 2003], könnte das Militär für die Durchführung dieser Mission mit bestehenden Flugzeugen zu minimalen Zusatzkosten sein.






Die künstliche Klima-Kontrolle durch GE


Dies sind die Ausbringung von Aerosolpartikeln in der Stratosphäre, sowie die Erhöhung der Wolkenhelligkeit in der Troposphäre mithilfe von künstlichen Kondensationskeimen.




Brisanz von Climate Engineering  (DFG)


Climate-Engineering wird bei Klimakonferenzen (z.B. auf dem Weltklimagipfel in Doha) zunehmend diskutiert. Da die Maßnahmen für die angestrebten Klimaziele bisher nicht greifen, wird Climate Engineering als alternative Hilfe in Betracht gezogen.





Umweltaktivistin und Trägerin des alternativen Nobelpreises Dr. Rosalie Bertell, berichtet in Ihrem Buch »Kriegswaffe Planet Erde« über die Folgewirkungen und Auswirkungen diverser (Kriegs-) Waffen..


Bild anklicken
Bild anklicken


Dieses Buch ist ein Muss für jeden Bürger auf diesem Planeten.


..Indessen gehen die Militärs ja selbst gar nicht davon aus, dass es überhaupt einen Klimawandel gibt, wie wir aus Bertell´s Buch wissen (Hamilton in Bertell 2011).


Sondern das, was wir als Klimawandel bezeichnen, sind die Wirkungen der immer mehr zunehmenden


und Eingriffe ins Erdgeschehen mittels Geoengineering, insbesondere durch die HAARP-ähnlichen Anlagen, die es inzwischen in aller Welt gibt..


Bild anklicken
Bild anklicken



Why in the World are they spraying 


Durch die bahnbrechenden Filme von Michael J. Murphy "What in the World Are They Spraying?" und "Why in the world are the Spraying?" wurden Millionen Menschen die Zerstörung durch SRM-Geoengineering-Projekte vor Augen geführt. Seitdem bilden sich weltweit Bewegungen gegen dieses Verbrechen.



Die Facebook Gruppe Global-Skywatch hat weltweit inzwischen schon über 90.000 Mitglieder und es werden immer mehr Menschen, die die Wahrheit erkennen und die "gebetsmühlenartig" verbreiteten Lügengeschichten der Regierung und Behörden in Bezug zur GE-Forschung zu Recht völlig hinterfragen. 


Bild anklicken: Untertitel in deutscher Sprache
Bild anklicken: Untertitel in deutscher Sprache






SRM Programme - Ausbringung durch Flugzeuge 




Die Frage die bleibt, ist die Antwort auf  Stratosphärische Aerosol- Injektions- Programme und die tägliche Umweltzer-störung auf unserem Planeten“




Die Arbeit von Brovkin et al. (2009) zeigt für ein Emissionsszenario ohne Emissionskontrolle, dass der Einsatz von RM für mehrere 1000 Jahre fortgesetzt werden muss, je nachdem wie vollständig der Treibhausgas-induzierte Strahlungsantrieb kompensiert werden soll.




Falls sich die Befürchtung bewahrheitet, dass eine Unterbrechung von RM-Maßnahmen zu abruptem Klimawandel führt, kann sich durch den CE-Einsatz ein Lock-in-Effekt ergeben. Die hohen gesamtwirtschaftlichen Kosten dieses abrupten Klimawandels würden sozusagen eine Weiterführung der RM-Maßnahmen erzwingen.







Neben den Studien von CSEPP (1992) und Robock et al. (2009), ist insbesondere die aktuelle Studie von McClellan et al. (2010) hervorzuheben. Für die Ausbringung mit Flugsystemen wird angenommen, dass das Material mit einer Rate von 0,03 kg/m freigesetzt wird. Es werden Ausbringungshöhen von 13 bis 30 km untersucht.





Bestehende kleine Düsenjäger, wie der F-15C Eagle, sind in der Lage in der unteren Stratosphäre in den Tropen zu fliegen, während in der Arktis größere Flugzeuge wie die KC-135 Stratotanker oder KC-10 Extender in der Lage sind, die gewünschten Höhen zu erreichen.


SRM Protest-Märsche gleichzeitig in circa 150 Städten - weltweit.


Geoengineering-Forschung als Plan B für eine weltweit verfehlte Klimapolik. 


Bild anklicken:
Bild anklicken:


Staaten führen illegale Wetter-Änderungs-Techniken als globales Experiment gegen den Klimawandel durch, geregelt über die UN, ausgeführt durch die NATO, mit militärischen Flugzeugen werden jährlich 10-20 Millionen Tonnen hoch giftiger Substanzen in den Himmel gesprüht..


Giftige Substanzen, wie Aluminium, Barium, Strontium, die unsere Böden verseuchen und die auch auf Dauer den ph-Wert des Bodens deutlich verändern würden. Es sind giftige Substanzen, wie Schwefel, welches die Ozonschicht systematisch zerstören würde. 






Weltweite  Protestmärsche gegen globale Geoengineering Experimente finden am 25. April 2015 in all diesen Städten gleichzeitig statt:




AUSTRALIEN - (Adelaide)

AUSTRALIEN - (Albury-Wodonga)

AUSTRALIEN - (Bendigo)

AUSTRALIEN - (Brisbane)

AUSTRALIEN - (Byron Bay)


AUSTRALIEN - (Canberra)


AUSTRALIEN - (Gold Coast)


AUSTRALIEN - (Melbourne)

AUSTRALIEN - (Newcastle)

AUSTRALIEN - (New South Wales, Byron Bay)


AUSTRALIEN - (Port Macquarie)

AUSTRALIEN - (South Coast NSW)

AUSTRALIEN - (South East Qeensland)

AUSTRALIEN - (Sunshine Coast)


AUSTRALIEN - (Tasmania)

BELGIEN - (Brüssel)

BELGIEN - (Brüssel Group)

BRASILIEN - (Curitiba)

BRASILIEN - (Porto Allegre)


Kanada - Alberta - (Calgary)

Kanada - Alberta - (Edmonton)

Kanada - Alberta - (Fort Saskatchewan)

Kanada - British Columbia - (Vancouver Group)

Kanada - British Columbia - (Victoria)

Kanada - Manitobak - (Winnipeg)

Kanada – Neufundland

Kanada - Ontario - (Barrie)

Kanada - Ontario - (Cambridge)

Kanada - Ontario - (Hamilton)

Kanada - Ontario - (London)

Kanada - Ontario - (Toronto)

Kanada - Ontario  - (Ottawa)

Kanada - Ontario - (Windsor)

Kanada - Québec - (Montreal)

KOLUMBIEN - (Medellin)


KROATIEN - (Zagreb)

DÄNEMARK - (Aalborg)

DÄNEMARK - (Kopenhagen)

DÄNEMARK - (Odense)

ESTLAND - (Tallinn)

Ägypten (Alexandria)

FINNLAND - (Helsinki)




DEUTSCHLAND - (Düsseldorf)




Ungarn (Budapest)

IRLAND - (Cork City)

IRLAND - (Galway)

ITALIEN - (Milano)

Italien - Sardinien - (Cagliari)

MAROKKO - (Rabat)


NIEDERLANDE - (Groningen)

NEUSEELAND - (Auckland)

NEUSEELAND - (Christchurch)

NEUSEELAND - (Hamilton)


NEUSEELAND - (New Plymouth)



NEUSEELAND - (Wellington)

NEUSEELAND - (Whangerei)




PORTUGAL - (Lissabon)

SERBIEN - (Glavni Gradovi)



SPANIEN - (Barcelona)

SPANIEN - (La Coruna)

SPANIEN - (Ibiza)

SPANIEN - (Murcia)

SPANIEN - (San Juan - Alicante)

SCHWEDEN - (Gothenburg)

SCHWEDEN - (Stockholm)

SCHWEIZ - (Bern)

SCHWEIZ - (Genf)

SCHWEIZ - (Zürich)

UK - ENGLAND - (London)

UK - ISLE OF MAN - (Douglas)

UK - Lancashir - (Burnley)

UK - Scotland - (Glasgow)

UK - Cornwall - (Truro)

USA - Alaska - (Anchorage)

USA - Arizona - (Flagstaff)

USA - Arizona - (Tucson)

USA - Arkansas - (Hot Springs)

USA - Kalifornien - (Hemet)

USA - CALIFORINA - (Los Angeles)

USA - Kalifornien - (Redding)

USA - Kalifornien - (Sacramento)

USA - Kalifornien - (San Diego)

USA - Kalifornien - (Santa Cruz)

USA - Kalifornien - (San Francisco)

USA - Kalifornien - Orange County - (Newport Beach)

USA - Colorado - (Denver)

USA - Connecticut - (New Haven)

USA - Florida - (Boca Raton)

USA - Florida - (Cocoa Beach)

USA - Florida - (Miami)

USA - Florida - (Tampa)

USA - Georgia - (Gainesville)

USA - Illinois - (Chicago)

USA - Hawaii - (Maui)

USA - Iowa - (Davenport)

USA - Kentucky - (Louisville)

USA - LOUISIANA - (New Orleans)

USA - Maine - (Auburn)

USA - Maryland - (Easton)

USA - Massachusetts - (Worcester)

USA - Minnesota - (St. Paul)

USA - Missouri - (St. Louis)

USA - Montana - (Missoula)

USA - NEVADA - (Black Rock City)

USA - NEVADA - (Las Vegas)

USA - NEVADA - (Reno)

USA - New Jersey - (Red Bank)

USA - New Mexico (Northern)

USA - NEW YORK - (Ithaca)

USA - NEW YORK - (Long Island)

USA - NEW YORK - (New York City)

USA - NORTH CAROLINA - (Asheville)

USA - NORTH CAROLINA - (Charlotte)

USA - NORTH CAROLINA - (Greensboro)

USA - Oregon - (Ashland)

USA - Oregon - (Portland)

USA - Pennsylvania - (Harrisburg)

USA - Pennsylvania - (Pittsburgh)

USA - Pennsylvania - (West Chester)

USA - Pennsylvania - (Wilkes - Barre)

USA - SOUTH CAROLINA - (Charleston)

USA - Tennessee - (Memphis)

USA - Texas - (Austin)

USA - Texas - (Dallas / Metroplex)

USA - Texas - (Houston)

USA - Texas - (San Antonio)

USA - Vermont - (Burlington)

USA - Virginia - (Richmond)

USA - Virginia - (Virginia Beach)

USA - WASHINGTON - (Seattle)

USA - Wisconsin - (Milwaukee)


Bild anklickem: Holger Strom Webseite
Bild anklickem: Holger Strom Webseite


Der Film zeigt eindrucksvolle Beispiele, beginnend beim Einsatz der Atombomben mit ihren schrecklichen Auswirkungen bis hin zu den gesundheitszerstörenden, ja tödlichen Hinterlassenschaften der Atomenergienutzung durch die Energiewirtschaft. Eine besondere Stärke des Films liegt in den Aussagen zahlreicher, unabhängiger Fachleute. Sie erläutern mit ihrem in Jahrzehnten eigener Forschung und Erfahrung gesammelten Wissen Sachverhalte und Zusammenhänge, welche die Befürworter und Nutznießer der Atomtechnologie in Politik, Wirtschaft und Militärwesen gerne im Verborgenen halten wollen.


Prof. Dr. med. Dr. h. c. Edmund Lengfelder



Nicht viel anders gehen Politiker/ Abgeordnete des Deutschen Bundestages mit der hoch toxischen riskanten SRM Geoengineering-Forschung um, um diese riskante Forschung durch die Parlamente zu bekommen.


Es wird mit gefährlichen Halbwissen und Halbwahrheiten gearbeitet. Sie werden Risiken vertuschen, verdrehen und diese Experimente als das einzig Richtige gegen den drohenden Klimawandel verkaufen. Chemtrails sind Stratosphärische Aerosol Injektionen, die  illegal auf globaler Ebene stattfinden, ohne jeglichen Parlament-Beschluss der beteiligten Regierungen.


Geoengineering-Projekte einmal begonnen, sollen für Jahrtausende fortgeführt werden - ohne Unterbrechung (auch bei finanziellen Engpässen oder sonstigen Unruhen) um nicht einen Umkehreffekt  auszulösen.


Das erzählt Ihnen die Regierung natürlich nicht, um diese illegale hochgefährliche RM Forschung nur ansatzweise durch die Parlamente zu bringen.


Spätestens seit dem Atommüll-Skandal mit dem Forschungs-Projekt ASSE wissen wir Bürger/Innen, wie Politik und Wissenschaft mit Forschungs-Risiken umgehen.. Diese Gefahren und Risiken werden dann den Bürgern einfach verschwiegen. 







Am 30. September 2012 ist eine neue Internetplattform zu Climate Engineering online gegangen www.climate-engineering.eu  


Die Plattform enthält alle neuen Infos -Publikationen, Veranstaltungen etc. zu Climate-Engineering.





Gezielte Eingriffe in das Klima?

Eine Bestandsaufnahme der Debatte zu Climate Engineering

Kieler Earth Institute



Climate Engineering:

Ethische Aspekte

Karlsruher Institut für Technologie



Climate Engineering:

Chancen und Risiken einer Beeinflussung der Erderwärmung. Naturwissenschaftliche und technische Aspekte

Leibniz-Institut für Troposphärenforschung, Leipzig


Climate Engineering:

Wirtschaftliche Aspekte 

Kiel Earth Institute



Climate Engineering:

Risikowahrnehmung, gesellschaftliche Risikodiskurse und Optionen der Öffentlichkeitsbeteiligung

Dialogik Stuttgart



Climate Engineering:

Instrumente und Institutionen des internationalen Rechts

Universität Trier



Climate Engineering:

Internationale Beziehungen und politische Regulierung

Wissenschaftszentrum Berlin für Sozialforschung




Illegale Atmosphären-Experimente finden in Deutschland  seit  2012 „täglich“ am Himmel statt.


Chemtrails  -  Verschwörung am Himmel ? Wettermanipulation unter den Augen der Öffentlichkeit


Auszug aus dem Buch: 


Ich behaupte, dass in etwa 2 bis 3 mal pro Woche, ungefähr ein halbes Dutzend  von frühmorgens bis spätabends in einer Art und Weise Wien überfliegen, die logisch nicht erklärbar ist. Diese Maschinen führen über dem Stadtgebiet manchmal auffällige Steig- und Sinkflüge durch , sie fliegen Bögen und sie drehen abrupt ab. Und sie hinterlassen überall ihre dauerhaft beständigen Kondensstreifen, welche auch ich Chemtrails nenne. Sie verschleiern an manchen Tagen ganz Wien und rundherum am Horizont ist strahlend blauer ...
Hier in diesem Buch  aus dem Jahr 2005 werden die anfänglichen stratosphärischen SRM-Experimente am Himmel beschrieben... inzwischen fliegen die Chemie-Bomber ja 24 h Nonstop, rund um die Uhr.





Weather Modification Patente




Umfangreiche Liste der Patente












Von Pat Mooney - Er ist Gründer und Geschäftsführer der kanadischen Umweltschutzorganisation ETC Group in Ottawa.


Im Jahr 1975 tat sich der US-Geheimdienst CIA mit Newsweek zusammen und warnte vor globaler Abkühlung. Im selben Jahr wiesen britische Wissenschaftler die Existenz eines Lochs in der Ozonschicht über der Antarktis nach und die UN-Vollversammlung befasste sich mit identischen Anträgen der Sowjetunion und der USA für ein Verbot von Klimamanipulationen, die militärischen Zwecken dienen. Dreißig Jahre später redeten alle - auch der US-Präsident über globale Erwärmung. 


Wissenschaftler warnten, der Temperaturanstieg über dem arktischen Eis  und im sibirischen Permafrost könnte in die Klimakatastrophe führen, und der US-Senat erklärte sich bereit , eine Vorlage zu prüfen, mit der Eingriffe in das Klima erlaubt werden sollten. 


Geo-Engineering ist heute Realität. Seit dem Debakel von Kopenhagen bemüht sich die große Politik zusammen mit ein paar Milliardären verstärkt darum, großtechnische Szenarien zu prüfen und die entsprechenden Experimente durchzuführen.


Seit Anfang 2009 überbieten sich die Medien mit Geschichten über Geoengineering als "Plan B". Wissenschaftliche Institute und Nobelpreisträger legen Berichte und Anträge vor, um die Politik zur Finanzierung von Feldversuchen zu bewegen. Im britischem Parlament wie im US-Kongress haben die Anhörungen schon begonnen. Anfang 2010 berichteten Journalisten, Bill Gates investiere privat in Geoengineering-Forschung und werde bei Geoengineering-Patenten zur Senkung der Meerestemperatur und zur Steuerung von Hurrikanen sogar als Miterfinder genannt. Unterdesssen hat Sir Richard Branson - Gründer und Besitzer der Fluglinie Virgin Air - verkündet, er habe eine Kommandozentrale für den Klimakrieg eingerichtet und sei für alle klimatechnischen Optionen offen. Zuvor hatte er 25 Millionen Dollar für eine Technik ausgesetzt, mit der sich die Stratosphäre reinigen lässt. 


Einige der reichsten Männer der Welt (z.B. Richard Branson und Bill Gates ) und die mächtigsten Konzerne (z.B. Shell , Boeing ) werden immer beteiligt.


Geoengineering Karte - ETC Group


ETC Group veröffentlicht eine Weltkarte über Geoengineering-Experimente, die groß angelegte Manipulation des Klimas unserer Erde.  Zwar gibt es keine vollständige Aufzeichnung von Wetter und Klima-Projekten in Dutzenden von Ländern, diese Karte ist aber der erste Versuch, um den expandierenden Umfang der Forschungs-Experimente zu dokumentieren. 


Fast 300 Geo-Engineering-Projekte / Experimente sind auf der Karte vertreten, die zu den verschiedenen Arten von Klima-Änderungs-Technologien gehören.

Einfach anklicken und vergrößern..
Einfach anklicken und vergrößern..


Aus der Sicht der reichen Länder (und ihrer Unternehmen) erscheint Geoengineering einfach perfekt. Es ist machbar. Es ist (relativ) billig. Und es erlaubt der Industrie, den Umbau unserer Wirtschaft und Produktionsweise für überflüssig zu erklären.


Das wichtigste aber ist: Geoengineering braucht keinerlei internationale Übereinkunft. Länder, Unternehmen, ja sogar superreiche Geo-Piraten können es auf eigene Faust durchziehen. Eine bescheidene >Koalition der Willigen< genügt vollauf, und eine Handvoll Akteure kann den Planeten nach Belieben umbauen.


Damit wir es nicht vergessen:


Seit 1945  führten die USA, die UdSSR, England, Frankreich und später auch China mehr als 2000 Atomtests durch – über und unter der Erde und ohne Rücksicht auf die zu erwartenden Auswirkungen auf Gesundheit und Umwelt weltweit. Niemand wurde um Erlaubnis gefragt. Wenn das Weltklima zu kippen droht, werden sie da wirklich vor einseitigen Entscheidungen zurückschrecken? 




Warum ist Geo-Engineering nicht akzeptabel..?


SRM Geoengineering kann nicht im Labor getestet werden: Es ist keine experimentelle Labor-Phase möglich, um einen spürbaren Einfluss auf das Klima zu haben. Geo-Engineering muss massiv eingesetzt werden.


Experimente oder Feldversuche entsprechen tatsächlich den Einsatz in der realen Welt, da kleine Tests nicht die Daten auf Klimaeffekte liefern.


Auswirkungen für die Menschen und die biologische Vielfalt würden wahrscheinlich sofort massiv und möglicherweise irreversibel sein.





Hände weg von Mutter Erde (HOME) ist eine weltweite Kampagne, um unserem kostbaren Planeten Erde, gegen die Bedrohung durch Geo-Engineering-Experimente zu verteidigen. Gehen Sie mit uns, um eine klare Botschaft an die Geo-Ingenieure und die Regierungen weltweit zu senden, dass unsere Erde kein ein Labor ist.



Liste der (SRM) Geoengineering-Forschung

Hier anklicken:
Hier anklicken:

http://www.ww.w.givewell.org/files/shallow/geoengineering/Geoengineering research funding 10-9-13.xls


Weltweite Liste der Geoengineering-Forschung SRM Forschungs Länder: 


Großbritannien, Vereinigte Staaten Amerika, Deutschland, Frankreich, Norwegen, Finnland, Österreich und Japan.



In "NEXT BANG!" beschreibt Pat Money neue Risikotechnologien, die heute von Wissenschaftlern, Politikern und mächtigen Finanziers aktiv für den kommerziellen Einsatz vorbereitet werden:


Geo-Engineering, Nanotechnologie, oder die künstliche >Verbesserung< des menschlichen Körpers.


"Die  Brisanz des Buches liegt darin, dass es zeigt, wie die Technologien, die unsere Zukunft bestimmen könnten, heute zum großflächigen Einsatz vorbereitet werden – und das weitgehend unbemerkt von der Öffentlichkeit. Atomkraft, toxische Chemikalien oder genmanipulierte Organismen konnten deshalb nicht durch demokratische Entscheidungen verhindert werden, weil hinter ihnen bereits eine zu große ökonomische und politische Macht stand, als ihre Risiken vielen Menschen erst bewusst wurden.


Deshalb dürfen wir die Diskussion über Geoengineering, Nanotechnologie, synthetische Biologie  und die anderen neuen Risikotechnologien nicht länger den selbsternannten Experten überlassen. Die Entscheidungen über ihren künftigen Einsatz fallen jetzt - es ist eine Frage der Demokratie, dass wir alle dabei mitreden."


Ole von UexküllDirektor der Right Livelihood Award Foundation, die den Alternativen Nobelpreis vergibt



Vanishing of the Bees - No Bees, No Food !


Verschwinden der Bienen  - Keine Bienen, kein Essen !









Solar Radiation Management = SRM

Es ist zu beachten, dass SRM Maßnahmen zwar auf kurzer Zeitskala wirksam werden können, die Dauer ihres Einsatzes aber an der Lebensdauer des CO-2 gebunden ist, welches mehrere Tausend Jahre beträgt.


CDR- Maßnahmen hingegen müssten über einen sehr langen Zeitraum (viele Jahrzehnte) aufgebaut werden, ihr Einsatz könnte allerdings beendet werden, sobald die CO2 Konzentration wieder auf ein akzeptables Niveau gesenkt ist. Entsprechende Anstrengungen vorausgesetzt, könnte dies bereits nach einigen Hundert Jahren erreicht sein.


CDR Maßnahmen: sind relativ teuer und arbeiten viel zu langsam. Bis sie wirken würden, vergehen viele Jahrzehnte


Solar Radiation Management SRM Maßnahmen: billig.. und schnell..



Quelle: Institut für Technikfolgenabschätzung






Solar Radiation Management = SRM


Ironie der Geoengineering Forschung:


Ein früherer SRM Abbruch hätte einen abrupten sehr heftigen Klimawandel zur Folge, den wir in dieser Schnelligkeit und heftigen Form nie ohne diese SRM Maßnahmen gehabt hätten. 


Das, was Regierungen mit den globalen GEO-ENGINEERING-INTERVENTIONEN verhindern wollten, genau das wären dann die globalen Folgeschäden bei der frühzeitigen Beendigung der SRM Forschungs-Interventionen.


Wenn sie diese hoch giftigen SAI - Programme  aus wichtigen Gründen vorher abbrechen müssten, droht uns ein abrupter Klimawandel, der ohne diese GE-Programme nie dagewesen wäre. 


Das bezeichne ich doch mal  als wahre  reale Satire..