(iv) Examples of future work


Readers will recognize that the results shown earlier, while containing interesting and encouraging pointers, represent just a start on a range of CFD comparisons that will need to be made. As a first step, the computations need to consider a complete rotor rather than just the section between one disc and the next. This will enable the exploration of end effects and the possible variation with height of the wind velocity to be examined as well as potential interference effects



Figure 12. Mean lift coefficients for a bare cylinder and a cylinder with discs over a bare cylinder for a range of rotation rates. Measurements from Reid [56]. (Online version in colour.)



between the rotors (if, as in figure 9, a multi-rotor vessel is chosen). The effect of heeling of the ship (even by only around 2–3◦) on the rotor’s aerodynamic performance also needs to be examined. As a final example of issues requiring examination, we note the possible effects of the top disc of the rotor on the behaviour of the salt-water spray discharge. One may well wish to cause the spray to spread as quickly as possible to minimize the risk of droplet collisions (which would create a larger than optimal size of droplets). It is known that imparting swirl to the spray will do that. However, that will lead to a reduction in the droplets’ vertical velocity, which, on its own, may reduce the proportion of salt particles reaching the cloud base. Such competing effects and their consequences need to be considered in the next phases of this research.




6. A limited-area experiment to explore the fundamental processes involved in marine cloud brightening


Before any geoengineering scheme based on SRM could be implemented, it first must fulfil the following criteria: (i) it can deliver the desired agent by which solar radiation will be scattered to space (sulphate particles in the case of a stratospheric aerosol and increases in sea spray aerosol in the case of cloud brightening); (ii) it can deliver the desired radiative response; and (iii) the undesirable climatic responses to geoengineering perturbations are minimal; certainly, they should be no worse than those associated with changes induced in the climate system from the inadvertent human activity that geoengineering is aiming to mitigate. The last of these cannot be tested by experiment for any of the SRM methods without full implementation lasting multiple years and carries a risk of substantial negative impacts. This was argued by Robock et al. [58], who focused upon geoengineering through stratospheric sulphur injection, currently considered to be one of the most feasible schemes [59]. Robock et al. [58] further argued that it is impossible to fully field test geoengineering schemes without significant modification to the climate system owing to non-local climate responses.


While we agree that large-scale field testing of any geoengineering scheme is indeed inseparable from deployment, small-scale field testing will be necessary to make significant progress in understanding the feasibility of geoengineering schemes [60]. An attractive aspect of MCB in terms of field testing is that, because aerosol particles in the MBL are extremely short-lived (typically a few days) compared with their stratospheric counterparts (1–2 years), perturbations to the radiative budget from MCB are inherently localized. This is not the case with stratospheric sulphur injection. This essentially means that it is possible to conduct a useful test of MCB (with minimal climate impacts) over a limited area that includes testing of TOA radiative responses in addition to the testing of injection methodologies and dispersion, etc. This is in contrast to stratospheric sulphur geoengineering, in which case, as Robock et al. [58] correctly argued, it would be extremely difficult to measure either an effect on the Earth’s radiation budget or maintenance of the aerosol in the stratosphere using only a small number of injections that might constitute a field test.


The stratospheric sulphur injection scheme has so far been considered one of the most viable schemes, not least because previous volcanic eruptions such as Pinatubo in 1991 have provided significant data against which model predictions of the radiative effects of sulphate particles in the stratosphere can be tested and validated [61,62]. Unlike stratospheric aerosols, many of the basic processes linking tropospheric aerosols, clouds, precipitation and radiation underpinning the cloud-brightening scheme are rather poorly understood [15]. Given that the influence of human activity on such processes has been proposed to make a substantial contribution to the radiative balance [63,64], it is imperative that basic knowledge of aerosol–cloud interactions is improved substantially, regardless of the viability of cloud brightening as a geoengineering scheme. 


Inadvertent human-induced changes to regional aerosol particle burdens have been used to investigate these processes in regions of stratocumulus in the past [65,66], though large natural variability and co-dependency of processes has to date limited progress towards full understanding. Also, emissions from the stacks of ships have been used to study aerosol–cloud interactions [67], but single plumes of this type can provide only limited information as plumes are narrow and entrainment and mixing are often dominant. A limited-area field experiment that provides a substantial and detectable perturbation above the background on spatial scales that are detectable from space could therefore offer a unique way to probe aerosol–cloud–precipitation interactions, and their influence on radiation. It would also enable new knowledge on aerosol influences on climate to be gained.


An analogy can be drawn between improving knowledge of aerosol–cloud interactions through a limited-area perturbation experiment and previous experiments conducted to investigate the control of micronutrients (notably iron) on the drawdown of carbon by marine biological systems. A number of experiments have been conducted, which have deliberately added iron to the ocean to improve knowledge of ocean biological carbon cycling. These have substantially improved knowledge of nutrient limitation on oceanic primary production, its subsequent control on plankton communities and how this impacts experiments to develop knowledge of the fundamental processes are seen as crucial to furthering the understanding of the Earth system and are critical before any consideration is given to large-scale deliberate attempts at carbon sequestration by such means [69]. A major concern is that larger scale experiments may have significant impacts on ocean ecosystems. A key point is that a limited-area field experiment to study aerosol–cloud interactions using artificially generated aerosol from sea spray can be carried out without any climatically damaging effects as the lifetime of atmospheric aerosol in the MBL is of the order of a few days at most. Such experiments therefore offer a valuable contribution to climate science and should not be viewed as solely a means of validating the cloud-brightening scheme.


Here, we present an initial framework for the testing and implementation of such experiments. We propose a set of field tests to critically assess the efficacy of MCB over a limited area. The tests are de minimus with respect to their climate effects, as we shall discuss later. The tests involve three phases, with increasing logistical complexity, each of which is designed to test one or more important components of the cloud-brightening scheme. Each involves the introduction and monitoring of controlled aerosol perturbations from one or more ship-based seeding platforms up to a limited area of approximately 100 × 100km2. A suite of observational platforms of increasing number and complexity, including aircraft, ships and satellites, will be required to observe the aerosol plume and in the latter experiments the cloud and albedo responses to the aerosol perturbations. These include the necessary cloud physical and chemical processes that determine theefficacy of the cloud-brightening scheme and are central to the broader questions of aerosol–cloud interactions. Multi-scale modelling work will be carried out to simulate/predict the cloud responses. The modelling work will be used to drive quantitative hypothesis testing for the field tests, and will be used to test our understanding of, and ability to simulate, aerosol–cloud interactions on the regional scale.


The proposed experiments are on a similar scale and complexity to those being routinely conducted by the international research community through interagency cooperation.2 Such integrated inter-agency collaboration will be necessary to deliver a limited-area field test of aerosol–cloud–precipitation interactions generated by a sea spray generation system. The field testing would need to be conducted in an open and objective manner, in accordance with the Oxford principles of geoengineering governance [70]. Further, they should be sufficiently small to not have inadvertent climate impacts, and certainly within an internationally agreed ‘allowed zone’ [71] to be determined through consultations between high-level international scientific organizations and other potential stakeholders. We return to this point later.



2For example, the variation in the American monsoon system (VAMOS) ocean cloud atmosphere land study (VOCALS) was developed to improve understanding of the southeast Pacific coupled ocean–atmosphere–land system on diurnal to inter-annual time scales. A large component of VOCALS centred around a large-scale regional experiment to investigate the interactions between aerosol, cloud and precipitation across a strong pollution gradient in a region dominated by the largest and most persistent stratocumulus cloud sheet on the planet [18]. The field experiment involved the use of five aircraft and two research ships, operating in the region between 70 and 80Wat a longitude of around 20S for a period of around four to six weeks and received multi-agency and multi-national support.



The recommended approach is to test any sea spray generation method, its effect on the cloud system and subsequent radiative impacts through a series of field trials of increasing complexity and expense. The first phase is to establish the ability of a full-size spray generation system to deliver sea spray particles of the correct size and number in such a way that they become mixed throughout the depth of the boundary layer. The second phase would be to use a single system to investigate cloud responses. Because it involves a different suite of cloud measurement instruments and a more complex array of platforms, phase 2 would commence only after the spray system and dispersion has been tested (requirements for success are provided below), and we anticipate that several attempts at phase 1 will be required to refine the spray generation methodology. The third phase would be to conduct a multi-source limited-area experiment at the 100 × 100km2 scale. Such a strategy assesses viability at each stage without incurring unnecessary risk or expense.



(a) Field phase 1: injection and dispersion of particles



Technology to create the large number of small particles that can act as CCN on which cloud droplets will form will need to be field tested to ensure that the delivery mechanism (here termed injection) can deliver particles in sufficient quantity and of the appropriate size into the MBL, and to study the dispersion of the aerosols throughout the MBL.


The seeding technology should be deployed on a ship or barge platform in a marine region favourable for MCB. Only a single aircraft fitted with state-of-the art aerosol measurement technology would need to be deployed to sample the aerosol plume as a function of the distance downwind of the injection source.


This study does not need to be carried out in the remote ocean boundary layer and could be located near to the coast for convenience during the early stages of testing of the engineering system. Studies of diesel-burning commercial shipping indicate that a single source will generate a plume that is typically

10km wide at a distance of 100km downwind [72]. The aircraft would be used to examine the physical and chemical characteristics of particles (size distribution, chemical composition and cloud-forming properties) close to the injection source and to examine how these particles disperse in the boundary layer with distance downwind. Tracer technology should be used to unequivocally identify the plume and hence record if concentrations of sea salt are undetectable from the background. No attempt should be made in phase 1 to study the cloud responses to the aerosol plume. To do so would significantly increase the complexity and cost of the experiment and would represent a risk were any given generation scheme to fail to deliver the required perturbation. Modelling activities in this phase should focus on the examination of the processes associated with the formation of particles and their modification in the stack, and on aspects of the dispersion and mixing of aerosols throughout the boundary layer downwind of the source.


Phase 1 would be considered successful if the aerosol concentrations measured approximately 100km downwind of the spray are sufficient to result in significant increase in aerosol concentration and enhanced CCN burden. From the parcel modelling studies described in §4, there is a need to increase the cloud droplet concentration from background values of perhaps 50–100 cm−3 to values of 200–400 cm−3, which previous estimates suggest requires a sprayer source rate of approximately from 1015 to 1016 particles per second [4,5]. Particles with salt masses greater than approximately 10−16 kg are optimal for seeding (see §4). Wang et al. [16] used a single source generating 1016 particles to seed a domain of 60 × 120km2 and obtained significant albedo enhancements in simulations of non-precipitating stratocumulus. Measurement of CCN concentrations within an approximately 10km wide plume that are consistently several hundred cm−3 would constitute a successful phase 1 trial.



(b) Field phase 2: single source cloud responses


Once the injection and dispersion technology has been tested and the aerosol plume characterized, the next stage is to examine the cloud responses to a single injection source. The cloud response to a single source will take the form of a ship track (albeit a deliberately produced one). Ship tracks are commonly observed features in regions of marine stratocumulus [72–75] and are associated with small particles emitted from large, commercial, diesel-burning ships [76]. There are existing field observations of ship tracks (e.g. the Monterey area ship track experiment in 1994; [77]). Figure 13 shows a schematic of the scale of such a plume. Ship tracks from commercial ships are typically 300km in length and approximately 10km wide a few hours downwind of the emitting ship [77].


Measurement both of the aerosol characteristics below the cloud and of the cloud physical processes should be made with multiple aircraft platforms. The goal would be to test the sensitivity of the cloud microphysical properties to the perturbations in the plume and to contrast these with the surrounding unseeded clouds under a range of conditions. Once again, releasing a tracer from the spray generation system would provide a useful identification of the plume position. Combinations of volatile organic carbon compounds with varying chemical lifetimes can be used to not only identify the plume but also determine its photochemical age, and these can be identified online using modern mass spectrometric or online chromatographic methods.


Success in phase 2 tests would require ship tracks that are readily detectable both as increased cloud droplet concentrations and reduced droplet sizes from the aircraft flying in the cloud layers, and from space using visible and near infrared satellite imagery. Particular emphasis would be placed upon trying to quantify and understand the extent to which the liquid water contents in the seeded clouds remain unchanged in the seeded area, or whether they decrease as some satellite measurements appear to indicate [79].


Modelling work would be conducted with both process-scale cloud models (see §§3 and 4) and climate models, to test the observed cloud microphysical and macrophysical responses. These modelling studies would also be used to quantitatively predict the outcome of introducing multiple injection sources, which is the key task in phase 3 testing.



(c) Field phase 3: multiple source limited-area experiment


In the third phase of the proposed field trials, multiple (between 5 and 10) injection sources (figure 13) would be used to create a line (of order 100km long) of injection sources approximately perpendicular to the mean wind. The plumes from these sources would disperse and would create a single broad perturbed area extending from the source line several hundred kilometres or more downwind. At such scales, the changes in the cloud-filled boundary layer as a result of the doping by particles should be detectable from space if the radiative impact is significant.



Figure 13. Schematic of the proposed phase 2 and 3 field testing to evaluate the cloud responses to (a) a single-seeded plume; (b,c) multiple-seeded plumes. Examination of ship tracks from commercial ships [72] tells us that the plumes spread quasi-linearly with time at a rate of approximately 2kmh−1 [78], which for typical wind speeds of 5–10ms−1 is a width of approximately 6–12km at a distance of 100 km downwind of the source (a). For phase 3 testing, 5–10 ships (six shown in the example here) would be spaced approximately 10km apart to generate a single plume 50–100km wide at a distance of 100km downwind (b). This broad plume and its surrounding unperturbed cloud would be sampled in the crosswind direction by stacked aircraft as discussed in the text (c). (Online version in colour.)


Multiple observational platforms should be used to study: (i) the aerosol physical and chemical properties below the cloud inside and outside the seeded area; (ii) the cloud microphysical, structural and dynamical response; and (iii) the cloud albedo response. Measurements should be made at different distances downwind of the source line. Aircraft flights at stacked levels below cloud, in cloud and above cloud would be complemented by a research ship that would continuously sample the air at a variety of distances downwind of the source line (figure 13c). Control experiments could be performed in two ways: (i) spatial control would involve contrasting the seeded area with the surrounding region and (ii) temporal control would involve temporal modulation of the source strength, perhaps with a 6 hour on–off frequency. The required duration of the entire field test would probably be one to two months, which would permit perhaps 15–20 aircraft case studies under different meteorological conditions and under different background aerosol regimes. Sufficient temporal control modulation would be available on these time scales to provide adequate constraints for model studies. The albedo response to the aerosol perturbations would be quantitatively determined using a combination of airborne and satellite remote sensing. One of the research aircraft would be dedicated to remote-sensing measurement of the shortwave and longwave radiation field above the clouds. Perturbations of several tens of Wm−2 are expected, which should be readily detectable compared with the background control cloud either side of the perturbed region. Process scale and climate modelling should be performed to quantitatively test the MCB hypothesis. This should involve studies designed to calculate the expected magnitude of the albedo perturbations as a function of the seeding strength and meteorological conditions and to compare these with the observations. In addition, the effects of seeding on the cloud dynamical fields and on the precipitation they produce both need to be determined using state-ofthe- art cloud physics and aircraft radar/LIDAR remote-sensing measurements. These would be used to examine the effects on precipitation as a function of distance downstream of the source. On the basis of ship track studies [72], the radiative effects of the seeding are likely to become indistinguishable from the background cloud within 200–300km downwind of the source, which suggests that precipitation impacts are also likely to be confined to within this distance from the source.


Passive, inert tracers would also be released from the ships (as is the case in all other phases of the work) to provide a control to examine how the particle size distributions are modified with distance downstream. Relative falls in the concentrations of particles with respect to the tracers would provide unprecedented information about the lifetime of the spray particles in the MBL. These would also have the benefit of providing unique data on the cloud top entrainment processes upon which ship track responses are now thought to be critically dependent [27,28]. 


Phase 3 success would comprise changes in reflected solar radiation within the seeded area of several tens of Wm−2, because this kind of change would be required in regions of marine stratocumulus to offset the radiative forcing due to anthropogenic greenhouse gases. An experiment that did not produce

brightening in excess of 10Wm−2, given increases in aerosol particles that parcel models demonstrate to be sufficient (§4), would be considered unacceptable, because it is almost inconceivable that this could be made to generate brightening deliver changes greatly in excess of 100Wm−2 would be termed successful because in this case the seeding could be scaled back to produce results of the desired magnitude.



(d) Location


Because MCB is aimed at brightening marine stratocumulus clouds, it would be natural to pursue an experiment in a region that frequently experiences this type of cloud. Further, because the increase in albedo owing to the addition of a quantity of additional CCN is greatest for regions with low background

concentrations [80,81], it would make most sense to conduct our proposed MCB test in one of the quasi-permanent sheets of marine stratocumulus, and sufficiently far from continental pollution influences that the radiative susceptibility is high. The northeastern or southeastern subtropical Pacific Ocean would be excellent choices. In addition, the field tests should be conducted sufficiently far upstream of landmasses so that the aerosol loading is able to return to normal background values by the time the advected air masses reach landfall. The larger Pacific Ocean basin would perhaps be more appropriate in this regard, although with typical aerosol lifetimes in the boundary layer of 1–2 days, either the Atlantic or the Pacific Basins would be suitable without due concern.



(e) Climatic impacts of marine cloud-brightening field testing


To ensure that the climatic effects of our proposed MCB field experiments are negligible, we argue here that they will satisfy two important and stringent criteria:


(i) The experiments do not cause detectable climatic responses inside or outside the region defined to be part of the experiment.


(ii) The experiment does not cause damage to the ecosystem.


We argue that detectable climatic responses of repeated MCB would require the SST to be lowered by several tenths of a Kelvin over the 100 × 100km2 area. Phase 3 has the greatest potential impact. The proposed experiment would be conducted over a period of perhaps two months (to ensure a sufficient

number of flights). To allow sufficient time for aerosols to disperse and to impact the low clouds and the radiation field, for each of the 15–20 flights, the spray generation system would need to be operated for perhaps a 6–12 hour period. The mean perturbations to the TOA solar radiation needed in regions of marine stratocumulus to produce a sufficient global response to counter anthropogenic greenhouse gas warming is of the order of 20–40Wm−2 (see fig. 3 in Latham et al. [5]). Because solar radiation is zero at night, daytime mean values of 40–80Wm−2 are needed. Atmospheric absorption changes and longwave perturbations are expected to be small, and so, in a two-month period, the mean perturbation to the surface net radiation budget from 20 instances lasting 12 hours during daylight would be approximately 10Wm−2. For an oceanic mixed layer depth of 50 m, which is typical in regions of subtropical marine stratocumulus [82], a net radiative perturbation of this magnitude would lead to a cooling of the SST of approximately 0.25K over the 100 × 100km2 experimental domain. To assess the detectability of such a systematic cooling, we can compare this number with fluctuations in SST typically associated with similarly sized ocean mesoscale eddies that are comparable in magnitude [83]. Large mesoscale eddies are common over the subtropical oceans where MCB experiments would be likely to take place [84]. It would therefore be difficult to detect impacts of MCB experiments on SST against the backdrop of natural oceanographic variability. In addition, it is difficult to argue that such a small perturbation to the SST over a region on the scale of a mesoscale ocean eddy can produce a significant climate impact. Nevertheless, it would be responsible for conducting high-resolution regional climate model simulations prior to conducting the field trials in order to provide assurance that climatic responses to such perturbations would indeed be negligible. Evidence of detectable remote impacts from the simulations would be sufficient to prevent field testing.


Further, it is difficult to conceive of significant ecosystem impacts of the experiment. The SST changes are small, and because the salt used to generate the aerosol particles originates and is returned to the ocean surface fairly locally, salinity and other nutrients are not significantly impacted. Changes in the level of illumination at the sea surface are relatively small (several times smaller than they would be for full-scale deployment), but further work will be needed to understand fully the potential ecosystem impacts [85].




7. Discussion


The multi-faceted research described in the preceding sections and conducted by our rather amorphous ‘team’ of scientists and technologists can be summarized as follows.


Several GCM studies ([5,6] and Jones et al. [7,8,10]) yield the conclusion that—subject to satisfactory resolution of all of a number of important issues, described earlier—MCB could produce a globally averaged negative forcing of significance. A detailed study by Korhonen et al. [9] predicts appreciably lower forcing, and this study outlines possible reasons for this disparity. Our GCM modelling confirms the results of studies by Jones et al. [7], which show that MCB could produce unacceptable rainfall reduction in the Amazonian region of South America. However, Jones et al. [8] show that this reduction could be circumvented by not seeding in a particular area. This study also provides some new results regarding the influence of MCB on sea-ice thickness. Our high-resolution cloud modelling underlines earlier work on the complexities of marine stratocumulus clouds, and shows how the negative forcing produced by cloud seeding is sensitive to both cloud characteristics and seeding strategy. Cloud parcel modelling provides estimates of the ranges of sprayed sea water droplet sizes and salt masses that would be effective for cloud droplet activation, as a function of cloud characteristics. This information is required for the development of the spray generators/disseminators for cloud seeding. Current work on one possible spray system—electrohydrodynamic spray fabrication — is described, while an alternative system involving microfabrication lithography was presented in Salter et al. [4]. More testing of both techniques is required. This earlier (2008) work also provided detailed information on an updated version of unmanned, satellite-guided, wind-powered Flettner-rotor vessels, which could be the vehicles from which the spray droplets would be disseminated, if MCB was ever to be deployed. Here, we present CFD studies of possible instabilities in Flettner rotors. Finally, we summarize current thinking regarding a possible three-stage quantitative field study of MCB, designed to determine whether cloud seeding with sea water aerosol can increase cloud albedo, and, if so, to what degree and under what circumstances. This study—which we envisage would be performed on a spatial scale of about 100 × 100km2, and is not designed to examine possible effects on climate—should also yield useful fundamental information on these climatologically important clouds. As already stated, deployment of MCB should never occur unless approved by the relevant international authority, and shown, via intensive modelling studies, to have no likelihood of significant adverse consequences.


It is unclear whether deployment of the MCB geoengineering technique would be warranted, even if the climate-change problem reached such a drastic stage that some form of intervention was deemed to be required. GCM modelling by three independent groups, using three different models [6,7,10], indicates that, if it functioned as assumed in the modelling, it could—roughly—stabilize the Earth’s average surface temperature and maintain current levels of polar sea-ice cover at approximately current values for some decades, at least up to the carbon dioxide-doubling point, where the required negative forcing for full compensation is approximately −3.7Wm−2. The computations of Korhonen et al. [9], discussed in §2, yield significantly lower values of negative forcing. This disparity may result from the usage of appreciably different values of natural (no-seeding) CDNCs, N0 (see §§1 and 2) or possibly the vertical velocity field values used in their simulations were too small. In practice, it may be possible to reconcile these disparate results by increasing the dissemination rate of sea water aerosol assumed in the Korhonen study—which we believe would be feasible technologically. However, as discussed in §4, marine stratocumulus clouds are much more complex than has been implicitly assumed in this modelling, and considerably more fundamental research into these clouds is required before we can establish whether our assumptions are justified to an acceptable degree. Also, we have not yet established—for all situations of interest—quantitative values for the fraction of spray droplets generated at or near the ocean surface that enter the bases of the clouds above. Nor have we succeeded to date in developing a sea water spray-production system that meets our requirements as to droplet size and spray rate. Finally, we have not yet thoroughly examined the (possibly adverse) ramifications of deployment of the technique. No case for deployment would exist unless it was established that all such deleterious effects of significance could be remedied. We need constantly to keep in mind that, while some areas may benefit from MCB geoengineering, there may well be regions where the response is significantly detrimental. If so, and if this situation could not be corrected, deployment of MCB would not be justified.


Two advantages of MCB, in principle, are that (i) the sprays could be switched off immediately, with essentially all of the sea water droplets returning to the ocean within a few days, and (ii) because, for some decades, not all suitable clouds would need to be seeded in order to produce sufficient negative forcing to balance the carbon dioxide increase, there exists, in principle, flexibility to confine the seeding to selected cloudy areas which produce no adverse consequences or reduce them to acceptable levels. However, item (i) just mentioned above could prove to be a serious disadvantage, because MCB is more vulnerable to attack than other leading SRM techniques, the spray vessels being located around the oceans. If all or some significant fraction of the fully deployed vessels were destroyed or otherwise rendered unworkable a rapid rise in temperature would be initiated, with concomitant changes in weather patterns and other adverse consequences. This would be true whether the vessels were powered by the wind or by burning fossil fuel.


If MCB proves to be viable, and deployment of an SRM scheme necessary, optimal beneficial cooling might be produced if it was used in concert with another possibly viable technique (e.g. stratospheric sulphur seeding [59], or microbubble ocean whitening [86]). In the former case, for example, the primary cooling could be supplied by the stratospheric scheme, with beneficial adjustments being made by MCB, which can function in a more localized manner. It may even prove possible and useful to create localized warming via seeding, to optimize this fine tuning.


Other issues that might be addressed by exploiting the initially localized cooling of oceanic surface waters that we hope would be produced by MCB (and/or the microbubble technique) are coral reef protection and hurricane weakening. In the latter case, it may prove possible to cool oceanic waters in the regions where hurricanes spawn. This would probably require continuous seeding over several months, culminating in the hurricane season. Also, it may prove possible to produce sufficient polar cooling to maintain existing sea-ice cover by seeding specially selected cloudy regions of much smaller total area than considered in our study [6].



Bala et al. [10] found that when MCB was used in a carbon dioxide-doubled environment the cooling associated with cloud seeding was a maximum in the two polar regions, compensating roughly for the preferential warming resulting from the additional carbon dioxide. Our own modelling (§2) has produced similar results. A comprehensive series of model inter-comparisons is urgently required in order to optimize and better quantify our understanding and assessment of MCB. We must also conduct a parallel programme of fundamental research into the associated cloud physics and chemistry, aerosol properties and transport, meteorology, etc.


As mentioned earlier, Bala et al. [10] also found that, if all suitable clouds were seeded, MCB would cause a decrease in globally averaged rainfall, but a net increase in rainfall over land. They surmised that this latter effect occurred because the cooling produced by MCB set up air circulations that brought moist air from ocean to land.


If satisfactory resolution of all significant problems associated with MCB, identified earlier, were to be achieved, and a need for its deployment was deemed to exist, it would be necessary to make an informed decision as to the type of vessel to be used for spray dissemination. Seeding from aircraft is one possibility. Alternatively, in principle, nuclear-powered vessels could be used. However, Salter et al. [4] focused attention on wind-powered, unmanned, satellite-guided Flettner ships, and it was estimated that about 1500 spray vessels, each consuming about 150kW (derived from the wind), would be required to produce the globally averaged negative forcing of −3.7Wm−2 required to balance carbon dioxide doubling. Flettner ships have the advantages of low cost, high manoeuvrability and low carbon footprint. A conventionally, powered ship might consume about 1MW; so, for both types of vessel, the ratio of the rate of planetary radiative loss to required operational power is very large (in the range from 105 to 107). It follows that considerations of energy efficiency, desirable though that is, should not dictate the selection of type of spray vessel. Latham et al. [5] pointed out that the main reason that this ratio is so high for MCB is that Nature provides the energy required for the increase of surface area of newly activated cloud droplets by four or five orders of magnitude as they ascend to cloud top and reflect sunlight.


The earlier mentioned arguments are based on the assumption that current GCM modelling is reasonably accurate. However, if it transpires that estimated albedo change/droplet flux ratio values are seriously inflated because, for example, of significant overestimation of the fraction of disseminated sea water particles that rise into the clouds, this issue would need to be reassessed. Other factors then to consider include the levels of pollution produced by spray vessels and the energy they consume. It is also to be noted that, during the decades leading to carbon dioxide doubling, the amount of negative forcing required of MCB would be correspondingly less, as would the emissions (which would be very low for wind-powered Flettner vessels). Definitive statements on these issues must wait on further research, on all fronts covered in this article.





We are grateful for the detailed and extremely helpful comments provided by the two reviewers of this study. We are deeply appreciative of the important role played by Kelly Wanser in the development of our research activity. We are grateful to Graham Feingold for helpful comments. We are grateful for the use of NERC, NCAS, HECToR supercomputer resources. Support for elements of this research was provided by the Fund for Innovative Climate and Energy Research, FICER, at the University of Calgary. This does not constitute endorsement of deployment in any form of cloud albedo modification by the funding agency. Part of this work was performed at the Stanford Nanofabrication Facility, supported by National Science Foundation grant no. ECS-9731293.







1 Latham, J. 1990 Control of global warming? Nature 347, 339–340. (doi:10.1038/347339b0)


2 Latham, J. 2002 Amelioration of global warming by controlled enhancement of the albedo and longevity of low-level maritime clouds. Atmos. Sci. Lett. 3, 52–58. (doi:10.1006/asle.2002. 0099)


3 Bower, K., Choularton, T., Latham, J., Sahraei, J. & Salter, S. 2006 Computational assessment of a proposed technique for global warming mitigation via albedo enhancement of marine stratocumulus clouds. Atmos. Res. 82, 328–336. (doi:10.1016/j.atmosres.2005.11.013)


4 Salter, S., Sortino, G. & Latham, J. 2008 Sea-going hardware for the cloud albedo method of reversing global warming. Phil. Trans. R. Soc. A 366, 3989–4006. (doi:10.1098/rsta.2008.0136)


5 Latham, J., Rasch, P., Chen, C.-C., Kettles, L., Gadian, A., Gettelman, A., Morrison, H., Bower, K. & Choularton, T. 2008 Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds. Phil. Trans. R. Soc. A 366, 3969–3987. (doi:10.1098/rsta. 2008.0137)


6 Rasch, P., Latham, J. & Chen, C.-C. 2009 Geoengineering by cloud seeding: influence on sea ice and climate system. Environ. Res. Lett, 4, 045112. (doi:10.1088/1748-9326/4/4/045112)


7 Jones, A., Hayward, J. & Boucher, O. 2009 Climate impacts of geoengineering marine stratocumulus clouds. J. Geophys. Res. 114, D10106. (doi:10.1029/2008JD011450)


8 Jones, A., Hayward, J. & Boucher, O. 2011 A comparison of the climate impacts of geoengineering by stratospheric SO2 injection and by brightening of marine stratocumulus clouds. Atmos. Sci. Lett. 12, 176–183. (doi:10.1002/asl.291)


9 Korhonen, H., Carslaw, K. S. & Romakkaniemi, S. 2010 Enhancement of marine cloud albedo via controlled sea spray injections: a global model study of the influence of emission rates, microphysics and transport. Atmos. Chem. Phys. Discuss. 10, 735–761. (doi:10.5194/acpd-10- 735-2010)


10 Bala, G., Caldreia, K., Nemani, R., Cao, L., Ban-Weiss, G. & Shin, H.-J. 2010 Albedo enhancement of marine cloud to counteract global warming: impacts on the hydrological cycle. Clim. Dyn. 37, 915–931. (doi:10.1007/s00382-010-0868-1)


11 Byun, D., Lee, Y., Tran, S. B. Q., Nugyen, V. D., Lee, S., Kim, S., Inamdar, N., Park, B. & Bau, H. 2008 Electrospray on super hydrophobic nozzles treated with argon and oxygen plasma. Appl. Phys. Lett. 92, 093507. (doi:10.1063/1.2840725)


12 Twomey, S. 1977 Influence of pollution on the short-wave albedo of clouds. J. Atmos. Sci. 34, 1149–1152. (doi:10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2)


13 Albrecht, B. 1989 Aerosols, cloud microphysics, and fractional cloudiness. Science 245, 1227–1230. (doi:10.1126/science.245.4923.1227)


14 Lohmann, U. & Feichter, J. 2005 Global indirect aerosol effects: a review. Atmos. Chem. Phys. 5, 715–737. (doi:10.5194/acp-5-715-2005)


15 Stevens, B. & Feingold, G. 2009 Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461, 607–613. (doi:10.1038/nature08281)


16 Wang, H., Rasch, P. & Feingold, G. 2011 Manipulating marine stratocumulus cloud amount and albedo: a process-modelling study of aerosol-cloud-precipitation interactions in response to injection of cloud condensation nuclei. Atmos. Chem. Phys. 11, 4237–4239. (doi:10.5194/acp-11-4237-2011)


17 Bennartz, R. 2007 Global assessment of marine boundary layer cloud droplet number concentration from satellite. J. Geophys. Res. Atmos. 112(D2), D02201. (doi:10.1029/2006JD0 07547)


18 Wood, R. et al. 2011 The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): goals, platforms, and field operations. Atmos. Chem. Phys. 11, 627–654. (doi:10.5194/acp-11-627-2011)


19 Martin, G. M., Ringer, M. A., Pope, V. D., Jones, A., Dearden, C. & Hinton, T. J. 2006 The physical properties of the atmosphere in the new Hadley centre global environmental model (HadGEM1). I. Model description and global climatology. J. Clim. 19, 1274–1301. (doi:10.1175/JCLI3636.1)


20 Randall, D. A. et al. 2007 Climate models and their evaluation. In Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller). Cambridge, UK: Cambridge University Press.


21 Xie, P. & Arkin, P.A. 1997 Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteor. Soc. 78, 2539–2558. (doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2)


22 Winston, M. 2011 Do climate models underestimate the sensitivity of northern hemisphere sea ice cover? J. Clim. 24, 3924–3934. (doi:10.1175/2011JCLI4146.1)


23 Abel, S. J., Walters, D. N. & Allen, G. 2010 Evaluation of stratocumulus cloud prediction in the Met Office forecast model during VOCALS-Rex. Atmos. Chem. Phys. Discuss. 10, 16 797– 16 835. (doi:10.5194/acpd-10-16797-2010)


24 Wyant, M. C. et al. 2010 The PreVOCA experiment: modeling the lower troposphere in the southeast Pacific. Atmos. Chem. Phys. 10, 4453–5010. (doi:10.5194/acp-10–4757–2010)


25 Bony, S. & Dufresne, J.-L. 2005 Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett. 32, L20806. (doi:10.1029/ 2005GL023851)


26 Twomey, S. 1974 Pollution and the planetary albedo. Atmos. Environ. 8, 1251–1256. (doi:10.1016/0004-6981(74)90004-3)


27 Ackerman, A. S., Kirkpatrick, M. P., Stevens, D. E. & Toon, O. B. 2004 The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature 432, 1014–1017. (doi:10.1038/nature03174)


28 Wood, R. 2007 Cancellation of aerosol indirect effects in marine stratocumulus through cloud thinning. J. Atmos. Sci. 64, 2657–2669. (doi:10.1175/jas3942.1)


29 Ackerman, A. S. et al. 2009 Large-eddy simulations of a drizzling, stratocumulus-topped marine boundary layer. Mon. Weather Rev. 137, 1083–1110. (doi:10.1175/2008MWR2582.1)


30 Leon, D. C., Wang, Z. & Liu, D. 2008 Climatology of drizzle in marine boundary layer clouds based on 1 year of data from cloudsat and cloud–aerosol lidar and infrared pathfinder satellite observations (CALIPSO). J. Geophys. Res. 113, D00A14. (doi:10.1029/2008JD009835)


31 Kubar, T.L., Hartmann, D. L. & Wood, R. 2009 Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. I. Satellite observations. J. Atmos. Sci. 66, 2953–2972. (doi:10.1175/2009JAS3071.1)


32 Bretherton, C. S., Wood, R., George, R. C., Leon, D., Allen, G. & Zheng, X. 2010 Southeast Pacific stratocumulus clouds, precipitation and boundary layer structure sampled along 20 S during VOCALS-REx. Atmos. Chem. Phys. Discuss. 10, 15 921–15 962. (doi:10.5194/acpd-10-15921-2010)


33 Wang, H. & Feingold, G. 2009 Modelling open cellular structures and drizzle in marine stratocumulus. I. Impact of drizzle on the formation and evolution of open cells. J. Atmos. Sci. 66, 3237–3256. (doi:10.1175/2009JAS3022.1)


34 Wang, H. & Feingold, G. 2009 Modelling open cellular structures and drizzle in marine stratocumulus. II. The microphysics and dynamics of the boundary region between open and closed cells. J. Atmos. Sci. 66, 3257–3275. (doi:10.1175/2009JAS3120.1)


35 Feingold, G., Koren, I., Wang, H., Xue, H. & Brewer, W. A. 2010 Precipitation-generated oscillations in open cellular cloud fields. Nature 466, 849–852. (doi:10.1038/nature09314)


36 Wang, S. P., Wang, Q. & Feingold, G. 2003 Turbulence, condensation, and liquid water transport in numerically simulated nonprecipitating stratocumulus clouds. J. Atmos. Sci. 60, 262–278. (doi:10.1175/1520-0469(2003)060<0262:TCALWT>2.0.CO;2)


37 Bretherton, C. S., Blossey, P. N. & Uchida, J. 2007 Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo. Geophys. Res. Lett. 34, L03813. (doi:10.1029/



38 Rosenfeld, D., Kaufman, Y. J. & Koren, I. 2006 Switching cloud cover and dynamical regimes from open to closed Benard cells in response to the suppression of precipitation by aerosols. Atmos. Chem. Phys. 6, 2503–2511. (doi:10.5194/acp-6-2503-2006)


39 Connolly, P., Möhler, O., Field, P. R., Saathoff, H., Burgess, R., Choularton, T. & Gallagher, M. 2009 Studies of heterogeneous freezing by three different desert dust samples. Atmos. Chem. Phys. 9, 2805–2824. (doi:10.5194/acp-9-2805-2009)


40 Topping, D., McFiggans, G. B. & Coe, H. 2005 A curved multi-component aerosol hygroscopicity model framework. I. Inorganic compounds. Atmos. Chem. Phys. 5, 1205–1222. (doi:10.5194/acp-5-1205-2005)


41 Jacobson, M. 2005 Fundamentals of atmospheric modelling, 2nd edn. New York, NY: Cambridge University Press.


42 Seinfeld, J. & Pandis, S. 2006 Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Hoboken, NJ: Wiley-Blackwell.


43 Taylor, G. 1964 Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A 280, 383–397. (doi:10.1098/rspa.1964.0151)


44 De la Mora, J. F. 2007 The fluid dynamics of Taylor cones. Annu. Rev. Fluid Mech. 39, 217–243. (doi:10.1146/annurev.fluid.39.050905.110159)


45 Gañán-Calvo, A. M. & Montanero, J. M. 2009 Revision of capillary cone-jet physics: electrospray and flow focusing. Phys. Rev. E 79, 066305. (doi:10.1103/PhysRevE.79.066305) Publisher’s note in Phys. Rev. E 2009 79, 069905. (doi:10.1103/PhysRevE.79. 069905)


46 Crowley, J. M. 1977 Role of Joule heating in the electrostatic spraying of liquids. J. Appl. Phys. 48, 145–147. (doi:10.1063/1.323299)


47 Deng, W., Waits, C. M., Morgan, B. & Gomez, A. 2009 Compact multiplexing of monodisperse electrosprays. J. Aerosol Sci. 40, 907–918. (doi:10.1016/j.jaerosci.2009.07.002)


48 Lozano, P., Martínez-Sánchez, M. & Lopez-Urdiales, J. M. 2004 Electrospray emission from non wetting flat dielectric surfaces. J. Colloid Interface Sci. 276, 392–399. (doi:10.1016/j.jcis.2004.04.017)


49 Bocanegra, R., Galán, D., Márquez, M., Loscertales, I. G. & Barrero, A. 2005 Multiple electrosprays emitted from an array of holes. J. Aerosol Sci. 36, 1387–1399. (doi:10.1016/j.jaero sci.2005.04.003)


50 Reverchon, E. & Spada, A. 2004 Crystalline micro-particles of controlled size produced by super-critical atomization. Ind. Eng. Chem. Res. 43, 1460–1465. (doi:10.1021/ie034111t)


51 Gadian, A., Blyth, A., Latham, J., Salter, S. & Stevens, L. 2009 Whitening the clouds. Planet Earth Online, 14 December 2009. See http://planetearth.nerc.ac.uk/features/ story.aspx?id=584.


52 Thom, A. 1934 On the effects of discs on the air forces on a rotating cylinder. Aeronautical Research Committee Report and Memoranda issue 1623. London, UK: HM Stationery Office. 53 Mittal, S. and Kumar, B. 2003 Flow past a rotating cylinder. J. Fluid Mech. 476, 302–334. (doi:10.1017/S0022112002002938)


54 Lien, F.-S. & Leschziner, M. A. 1994 A general non-orthogonal finite-volume algorithm for turbulent flow at all speeds incorporating second-moment closure. Part 1. Numerical implementation. Comp. Meth. Appl. Mech. Eng. 114, 123–148. (doi:10.1016/0045-7825(94)90165-1)


55 Craft, T. J., Gerasimov, A. V., Iacovides, H. & Launder, B. E. 2004 The negatively buoyant wall jet: the performance of options in RANS modelling. Int. J. Heat Fluid Flow 25, 809–823. (doi:10.1016/j.ijheatfluidflow.2004.05.003)


56 Reid, E. G. 1924 Tests of rotating cylinders. National Advisory Committee Technical Note no. 209. Langley Memorial Aeronautical Laboratory, Hampto, VA. See http://naca.central.cranfield.ac.uk/reports/1924/naca-tn-209.pdf.


57 Craft, T. J., Iacovides, H. & Launder, B. E. 2010 Computational modelling of Flettner rotor performance with and without Thom discs. In Proc. 8th Int. ERCOFTAC Symp. on Engineering Turbulence Modelling and Measurements, ETMM8, Marseilles, France, 8–10 June 2010, pp. 152–157.


58 Robock, A., Bunzl, M., Kravitz, B., Georgiy, L. & Stenchikov, G. L. 2010 A test for geoengineering? Science 327, 530–531. (doi: 10.1126/science.1186237)


59 Crutzen, P. J. 2006 Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma. Clim. Change 77, 211–219. (doi:10.1007/s10584-006-9101-y)


60 Royal Society 2009 Geoengineering the climate: science, governance and uncertainty. Science Policy Report 10/09. London, UK: Royal Society.


61 Minnis, P., Harrison, E. F., Stowe, L. L., Gibson, G. G., Denn, F. M., Doelling, D. R. & Smith Jr, W. L. 1993 Radiative climate forcing by the Mount Pinatubo eruption. Science 259, 1411–1415. (doi:10.1126/science.259.5100.1411)


62 McCormick, M. P., Thomason, L. W. & Trepte, C. R. 1995 Atmospheric effects of the Mt Pinatubo eruption. Nature 373, 399–404. (doi:10.1038/373399a0)


63 IPCC. 2007 Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller). Cambridge, UK: Cambridge University Press.


64 Isaksen, I. S. A. et al. 2009 Atmospheric composition change: climate–chemistry interactions. Atmos. Environ. 43, 5138–5192. (doi:10.1016/j.atmosenv.2009.08.003)


65 Johnson, D. W. et al. 2000 Observations of the evolution of the aerosol, cloud and boundarylayer characteristics during the 1st ACE-2 Lagrangian experiment. Tellus B 52, 348–374.



66 Stevens, B. et al. 2003 Dynamics and chemistry of marine stratocumulus: DYCOMS II. Bull. Am. Meteorol. Soc. 84, 579–593. (doi:10.1175/BAMS-84-5-579)


67 Russell, L. M. et al. 1999 Aerosol dynamics in ship tracks. J. Geophys. Res. 104, 31 077–31 095. 68 Boyd, P. W. et al. 2007 Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315, 612–617. (doi:10.1126/science.1131669)


69 Lampitt, R. S. et al. 2008 Ocean fertilization: a potential means of geoengineering? Phil. Trans. R. Soc. A 366, 3919–3945. (doi:10.1098/rsta.2008.0139)


70 Rayner 2010 The regulation of geoengineering. See http://www.sbs.ox.ac.uk/centres/insis/ news/Pages/regulation-geoengineering.aspx.


71 Morgan, G. & Ricke, K. 2010 Cooling the earth through solar radiation management. Geneva, Switzerland: International Risk Governance Council.


72 Durkee, P. A., Chartier, R. E., Brown, A., Trehubenko, E. J., Rogerson, S. D., Skupniewicz, C., Nielsen, K. E., Platnick, S. & King, M. D. 2000 Composite ship track characteristics.


J. Atmos. Sci. 57, 2543–2553. (doi:10.1175/1520-0469(2000)057<2542:CSTC>2.0.CO;2) 73 Conover, J. H. 1966 Anomalous cloud lines. J. Atmos. Sci. 23, 778–785. (doi:10.1175/1520- 0469(1966)023<0778:ACL>2.0.CO;2)


74 Coakley Jr, J. A., Bernstein, R. L. & Durkee, P. A. 1987 Effect of ship-stack effluents on cloud reflectivity. Science 237, 1020–1022. (doi:10.1126/science.237.4818.1020)


75 Coakley, J. A. et al. 2000 The appearance and disappearance of ship tracks on large spatial scales. J. Atmos. Sci. 57, 2765–2778. (doi:10.1175/1520-0469(2000)057<2765:TAADOS>



76 Hobbs, P. V. et al. 2000 Emissions from ships with respect to their effects on clouds. J. Atmos. Sci., 57, 2570–2590. (doi:10.1175/1520-0469(2000)057<2570:EFSWRT>2.0.CO;2)


77 Durkee, P. A., Noone, K. J. & Bluth, R. T. 2000 The Monterey area ship track experiment. J. Atmos. Sci. 57, 2523–2541. (doi:10.1175/1520-0469(2000)057<2523:TMASTE>2.0.CO;2)


78 Heffter, J. L. 1965 The variation of horizontal diffusion parameters with time for travel periods of one hour or longer. J. Appl. Meteor. 4, 153–156. (doi:10.1175/1520-0450(1965)004 <0153:TVOHDP>2.0.CO;2)


79 Coakley, J. A. & Walsh, C. D. 2002 Limits to the aerosol indirect radiative effect derived from observations of ship tracks. J. Atmos. Sci. 59, 668–680. (doi:10.1175/1520-0469(2002)059 <0668:LTTAIR>2.0.CO;2)


80 Platnick, S. & Twomey, S. 1994 Determining the susceptibility of cloud albedo to changes in droplet concentration with the advanced very high resolution radiometer. J. Appl. Meteorol. 33, 334–347. (doi:10.1175/1520-0450(1994)033<0334:DTSOCA>2.0.CO;2)


81 Oreopoulos, L. & Platnick, S. 2008 Radiative susceptibility of cloudy atmospheres to droplet number perturbations. II. Global analysis from MODIS. J. Geophys. Res. 113, D14S21. (doi:10.1029/2007JD009655)


82 de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A. & Iudicone, D. 2004 Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res. 109, C12003. (doi:10.1029/2004JC002378)


83 Chaigneau, A., Le Texier, M., Eldin, G., Grados, C. & Pizarro, O. 2011 Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: a composite analysis from altimetry and Argo profiling floats. J. Geophys. Res. 116, C11025. (doi:10.1029/2011JC007134)


84 Chelton, D. B., Schlax, M. G., Samelson, R. M. & de Szoeke, R. A. 2007 Global observations of large oceanic eddies. Geophys. Res. Lett. 34, L15606. (doi:10.1029/2007GL030812)


85 Russell, L. M. et al. 2012 Ecosystem impacts of geoengineering: a review for developing a science plan. Ambio 41, 350–369. (doi:10.1007/s13280-012-0258-5


86 Seitz, R. 2011 Bright water: hydrosols, water conservation and climate change. Climatic Change 105, 365–381.





Quelle: http://rsta.royalsocietypublishing.org/content/roypta/370/1974/4217.full.pdf


Zurück zur >>> Seite 2   >>>  zum Anfang Seite 1

Ein künstliches Klima durch SRM Geo-Engineering



 Sogenannte "Chemtrails"     sind SRM Geoengineering-   Forschungs-Experimente


 Illegale Feldversuche der   SRM Technik, weltweit.



Illegale militärische und zivile GE-Forschungen finden in einer rechtlichen Grauzone statt.


Feldversuche oder illegale SRM Interventionen wurden nie in nur einem einzigen Land der Welt,  je durch ein Parlament gebracht, deshalb sind sie nicht legalisiert und finden in einer rechtlichen Grauzone der Forschung statt. Regierungen wissen genau, dass sie diese Risiko-Forschung, die absichtliche Veränderung mit dem Wetter nie durch die Parlamente bekommen würden..


HAARP - Die Büchse der Pandora in militärischen Händen



Illegale zivile und militärische SRM Experimente finden 7 Tage die Woche (nonstop) rund um die Uhr statt. 


Auch Nachts - trotz Nacht-



Geo-Engineering Forschung


Wissenschaftler planen 10 bis 100 Megatonnen hoch toxischer Materialien wie Aluminium, synthetischen Nanopartikeln jedes Jahr in unserer Atmosphäre auszubringen.


Die Mengenangaben von SRM Materialien werden neuerdings fast immer in Teragramm berechnet. 


  1 Teragramm  = 1 Megatonne

  1 Megatonne  = 1 Million Tonnen



SAI = Stratosphärische

Aerosol Injektionen mit toxischen Materialen wie:


  • Aluminiumoxide
  • Black Carbon 
  • Zinkoxid 
  • Siliciumkarbit
  • Diamant
  • Bariumtitanat
  • Bariumsalze
  • Strontium
  • Sulfate
  • Schwefelsäure 
  • Schwefelwasserstoff
  • Carbonylsulfid
  • Ruß-Aerosole
  • Schwefeldioxid
  • Dimethylsulfit
  • Titan
  • Lithium
  • Lithiumsalze
  • Kohlenstoff Flugasche 
  • Kalkstaub
  • Titandioxid
  • Natriumchlorid
  • Meersalz 
  • Calciumcarbonat
  • Siliciumdioxid
  • Silicium
  • Bismuttriiodid (BiI3
  • Polymere
  • Polymorph von TiO2
  • Dialektrika:
  • Sulfate
  • Halogenide und
  • Kohlenstoffverbindungen
  • Halbleiter:
  • Indiumantimonid (InSb)
  • Bleitellunid (PbTe)
  • Indiumarsen (InAs)
  • Carbonat Aersole
  • Silberjodit, Silberiodit
  • Trockeneis (gefrorenes Kohlendioxid)
  • Hygroskopische Materialien wie Salz,
  • Silanox
  • Cilicagel, Kieselgel
  • Kieselsäure 
  • Syloid65 (Subventionierte Brennstoffmischungen =
  • Chemtrail Chemikalien Mix) aus Patentunterlagen
  • Silberiodit-Kaliumiodit-Komplex
  • Lithium-Silberiodit-Komplex
  • Militär verteilt: Glasfaser-Spreu






Der Wissenschaftler David Keith, der die Geo-Ingenieure Ken Caldeira und Alan Robock in ihrer Arbeit unterstütztsagte auf einem Geo-Engineering - Seminar am 20. Februar 2010, dass sie beschlossen hätten, ihre stratosphärischen Aerosol-Modelle von Schwefel auf Aluminium umzustellen


Niemand auf der ganzen Welt , zumindest keiner der staatlichen Medien berichtete von diesem wichtigen Ereignis.





April 2016 

Aerosol Experiments Using Lithium and Psychoactive Drugs Over Oregon.



SKYGUARDS: Petition an das Europäische Parlament - 2013



Wir haben keine Zeit zu verlieren!




Klage gegen Geo-Engineering und Klimapolitik 


Der Rechtsweg ist vielleicht die einzige Hoffnung, Geo-Engineering-Programme zum Anhalten zu bewegen. Paris und andere Klimaabkommen schaffen Ziele von rechtlich international verbindlichen Vereinbarungen. Wenn sie erfolgreich sind, werden höchstwahrscheinlich SRM-Programme ohne ein ordentliches Gerichtsverfahren legalisiert. Wenn das geschieht, wird das unsere Fähigkeit Geoengineering zu verhindern und jede Form von rechtlichen Maßnahmen zu ergreifen stark behindern.


Ziel dieser Phase ist es, Mittel zu beschaffen um eine US- Klage vorzubereiten. Der Hauptanwalt Wille Tierarzt wählt qualifizierte Juristen aus dem ganzen Land aus, um sicher zu stellen, dass wir Top-Talente sichern, die wir für unser langfristiges Ziel einsetzen.



Die Fakten sind, dass seit einem Jahrzehnt am Himmel illegale Wetter -Änderungs-Programme stattfinden, unter Einsatz des Militärs im Rahmen der NATO, ohne Wissen oder Einwilligung der Bevölkerung..

EU-Konferenz und Petition über Wettermodifizierung und Geoengineering in Verbindung mit HAARP Technologien


Die Zeit ist gekommen. Anonymous wird nicht länger zusehen. Am 23. April werden wir weltweit gegen Chemtrails und Geoengineering friedlich demonstrieren.


Anonymous gegen Geoengineering 



Wir waren die allerletzten Zeit Zeugen eines normalen natürlichen blauen Himmels.





Heute ist der Himmel nicht mehr blau, sondern eher rot oder grau. 



Metapedia –

Die alternative Enzyklopädie








Die neue Enzyklopädie


http://de.allbuch.online/wiki/Chemtrails Chemtrails

http://de.allbuch.online/wiki/GeoEngineering GeoEngineering

http://de.allbuch.online/wiki/HAARP HAARP






SRM - Geoengineering

Aluminium anstatt Schwefeloxid


Im Zuge der American Association for the Advancement of Science (AAAS) Conference 2010, San Diego am 20. Februar 2010, wurde vom kanadischen Geoingenieur David W. Keith (University of Calgary) vorgeschlagen, Aluminium anstatt Schwefeldioxid zu verwenden. Begründet wurde dieser Vorschlag mit 1) einem 4-fach größeren Strahlungsantrieb 2) einem ca. 16-fach geringeren Gerinnungsfaktor. Derselbe Albedoeffekt könnte so mit viel geringeren Mengen Aluminium, anstatt Schwefel, bewerkstelligt werden. [13]


Mehr Beweise als dieses Video braucht man wohl nicht. >>> Aerosol-Injektionen


Das "Geo-Engineering" Klima-Forschungsprogramm der USA wurde direkt dem Weißen Haus unterstellt,

bzw. dort dem White House Office of Science and Technology Policy (OSTP) zugewiesen. 



Diese Empfehlung lassen bereits das Konfliktpotential dieser GE-Forschung erahnen.






In den USA fällt Geo-Engineering unter Sicherheitspolitik und Verteidigungspolitik: 



Geo-Engineering als Sicherheitspolitische Maßnahme..


Ein Bericht der NASA merkt an, eine Katastrophensituation könnte die Entscheidung über SRM maßgeblich erleichtern, dann würden politische und ökonomische Einwände irrelevant sein. Die Abschirmung von Sonnenlicht durch SRM Maßnahmen wäre dann die letzte Möglichkeit, um einen katastrophalen Klimawandel abzuwenden.


maßgeblich erleichtern..????


Nach einer Katastrophensituation sind diese ohnehin illegalen geheimen militärischen SRM Programme wohl noch leichter durch die Parlamente zu bringen unter dem Vorwand der zivilen GE-Forschung. 




Der US-Geheimdienst CIA finanziert mit 630.000 $ für die Jahre   2013/14 

Geoengineering-Studien. Diese Studie wird u.a. auch von zwei anderen staatlichen Stellen NASA und NOAA finanziert. 




Um möglichst keine Spuren zu hinterlassen.. sind wirklich restlos alle Links im Netz entfernt worden. 






Es existieren viele Vorschläge zur technologischen Umsetzung des stratosphärischen Aerosol- Schildes.


Ein Patent aus dem Jahr 1991 behandelt das Einbringen von Aerosolen in die Stratosphäre

(Chang 1991).


Ein neueres Patent behandelt ein Verfahren, in dem Treibstoffzusätze in Verkehrsflugzeugen zum Ausbringen reflektierender Substanzen genutzt werden sollen (Hucko 2009).




Die von Microsoft finanzierte Firma Intellectual Ventures fördert die Entwick­lung eines „Stratoshield“ genannten Verfahrens, bei dem die Aerosolerzeugung in der Strato­sphäre über einen von einem Ballon getragenen Schlauch vom Erdboden aus bewirkt werden soll.


CE-Technologien wirken entweder symptomatisch oder ursächlich


Symptomatisch wirkend: 

Modifikation durch SRM-Geoengineering- Aerosole in der Stratosphäre


Ursächlich wirkend: 

Reduktion der CO2 Konzentration (CDR) 


Effekte verschiedener Wolkentypen


Dicke, tief hängende Wolken reflektieren das Sonnenlicht besonders gut und beeinflussen kaum die Energie, die von der Erde als langwellige Infrarotstrahlung abgegeben wird. Hohe Wolken sind dagegen kälter und meist dünner. Sie lassen daher mehr Sonnenlicht durch, dafür speichern sie anteilig mehr von der langwelligen, abgestrahlten Erdenergie. Um die Erde abzukühlen, sind daher tiefe Wolken das Ziel der Geoingenieure.



Zirruswolken wirken also generell erwärmend (Lee et al. 2009). Werden diese Wolken künstlich aufgelöst oder verändert, so wird sich in der Regel ein kühlender Effekt ergeben.


Nach einem Vorschlag von Mitchell et al.  (2009) könnte dies durch ein Einsäen von effizienten Eiskeimen bei der Wolkenbildung geschehen.



Eiskeime werden nur in sehr geringer Menge benötigt und könnten beispielsweise durch Verkehrs-Flugzeuge an geeigneten Orten ausgebracht werden. Die benötigten Materialmengen liegen dabei im Bereich von einigen kg pro Flug.



Die RQ-4 Global Hawk fliegt etwa in 20 Kilometer Höhe ohne Pilot.

1 - 1,5  Tonnen Nutzlast.


Instead of visualizing a jet full of people, a jet full of poison.



Das Militär hat bereits mehr Flugzeuge als für dieses Geo-Engineering-Szenario erforderlich wären, hergestellt. Da der Klimawandel eine wichtige Frage der nationalen Sicherheit ist [Schwartz und Randall, 2003], könnte das Militär für die Durchführung dieser Mission mit bestehenden Flugzeugen zu minimalen Zusatzkosten sein.






Die künstliche Klima-Kontrolle durch GE


Dies sind die Ausbringung von Aerosolpartikeln in der Stratosphäre, sowie die Erhöhung der Wolkenhelligkeit in der Troposphäre mithilfe von künstlichen Kondensationskeimen.




Brisanz von Climate Engineering  (DFG)


Climate-Engineering wird bei Klimakonferenzen (z.B. auf dem Weltklimagipfel in Doha) zunehmend diskutiert. Da die Maßnahmen für die angestrebten Klimaziele bisher nicht greifen, wird Climate Engineering als alternative Hilfe in Betracht gezogen.





Umweltaktivistin und Trägerin des alternativen Nobelpreises Dr. Rosalie Bertell, berichtet in Ihrem Buch »Kriegswaffe Planet Erde« über die Folgewirkungen und Auswirkungen diverser (Kriegs-) Waffen..


Bild anklicken
Bild anklicken


Dieses Buch ist ein Muss für jeden Bürger auf diesem Planeten.


..Indessen gehen die Militärs ja selbst gar nicht davon aus, dass es überhaupt einen Klimawandel gibt, wie wir aus Bertell´s Buch wissen (Hamilton in Bertell 2011).


Sondern das, was wir als Klimawandel bezeichnen, sind die Wirkungen der immer mehr zunehmenden


und Eingriffe ins Erdgeschehen mittels Geoengineering, insbesondere durch die HAARP-ähnlichen Anlagen, die es inzwischen in aller Welt gibt..


Bild anklicken
Bild anklicken



Why in the World are they spraying 


Durch die bahnbrechenden Filme von Michael J. Murphy "What in the World Are They Spraying?" und "Why in the world are the Spraying?" wurden Millionen Menschen die Zerstörung durch SRM-Geoengineering-Projekte vor Augen geführt. Seitdem bilden sich weltweit Bewegungen gegen dieses Verbrechen.



Die Facebook Gruppe Global-Skywatch hat weltweit inzwischen schon über 90.000 Mitglieder und es werden immer mehr Menschen, die die Wahrheit erkennen und die "gebetsmühlenartig" verbreiteten Lügengeschichten der Regierung und Behörden in Bezug zur GE-Forschung zu Recht völlig hinterfragen. 


Bild anklicken: Untertitel in deutscher Sprache
Bild anklicken: Untertitel in deutscher Sprache






SRM Programme - Ausbringung durch Flugzeuge 




Die Frage die bleibt, ist die Antwort auf  Stratosphärische Aerosol- Injektions- Programme und die tägliche Umweltzer-störung auf unserem Planeten“




Die Arbeit von Brovkin et al. (2009) zeigt für ein Emissionsszenario ohne Emissionskontrolle, dass der Einsatz von RM für mehrere 1000 Jahre fortgesetzt werden muss, je nachdem wie vollständig der Treibhausgas-induzierte Strahlungsantrieb kompensiert werden soll.




Falls sich die Befürchtung bewahrheitet, dass eine Unterbrechung von RM-Maßnahmen zu abruptem Klimawandel führt, kann sich durch den CE-Einsatz ein Lock-in-Effekt ergeben. Die hohen gesamtwirtschaftlichen Kosten dieses abrupten Klimawandels würden sozusagen eine Weiterführung der RM-Maßnahmen erzwingen.







Neben den Studien von CSEPP (1992) und Robock et al. (2009), ist insbesondere die aktuelle Studie von McClellan et al. (2010) hervorzuheben. Für die Ausbringung mit Flugsystemen wird angenommen, dass das Material mit einer Rate von 0,03 kg/m freigesetzt wird. Es werden Ausbringungshöhen von 13 bis 30 km untersucht.





Bestehende kleine Düsenjäger, wie der F-15C Eagle, sind in der Lage in der unteren Stratosphäre in den Tropen zu fliegen, während in der Arktis größere Flugzeuge wie die KC-135 Stratotanker oder KC-10 Extender in der Lage sind, die gewünschten Höhen zu erreichen.


SRM Protest-Märsche gleichzeitig in circa 150 Städten - weltweit.


Geoengineering-Forschung als Plan B für eine weltweit verfehlte Klimapolik. 


Bild anklicken:
Bild anklicken:


Staaten führen illegale Wetter-Änderungs-Techniken als globales Experiment gegen den Klimawandel durch, geregelt über die UN, ausgeführt durch die NATO, mit militärischen Flugzeugen werden jährlich 10-20 Millionen Tonnen hoch giftiger Substanzen in den Himmel gesprüht..


Giftige Substanzen, wie Aluminium, Barium, Strontium, die unsere Böden verseuchen und die auch auf Dauer den ph-Wert des Bodens deutlich verändern würden. Es sind giftige Substanzen, wie Schwefel, welches die Ozonschicht systematisch zerstören würde. 






Weltweite  Protestmärsche gegen globale Geoengineering Experimente finden am 25. April 2015 in all diesen Städten gleichzeitig statt:




AUSTRALIEN - (Adelaide)

AUSTRALIEN - (Albury-Wodonga)

AUSTRALIEN - (Bendigo)

AUSTRALIEN - (Brisbane)

AUSTRALIEN - (Byron Bay)


AUSTRALIEN - (Canberra)


AUSTRALIEN - (Gold Coast)


AUSTRALIEN - (Melbourne)

AUSTRALIEN - (Newcastle)

AUSTRALIEN - (New South Wales, Byron Bay)


AUSTRALIEN - (Port Macquarie)

AUSTRALIEN - (South Coast NSW)

AUSTRALIEN - (South East Qeensland)

AUSTRALIEN - (Sunshine Coast)


AUSTRALIEN - (Tasmania)

BELGIEN - (Brüssel)

BELGIEN - (Brüssel Group)

BRASILIEN - (Curitiba)

BRASILIEN - (Porto Allegre)


Kanada - Alberta - (Calgary)

Kanada - Alberta - (Edmonton)

Kanada - Alberta - (Fort Saskatchewan)

Kanada - British Columbia - (Vancouver Group)

Kanada - British Columbia - (Victoria)

Kanada - Manitobak - (Winnipeg)

Kanada – Neufundland

Kanada - Ontario - (Barrie)

Kanada - Ontario - (Cambridge)

Kanada - Ontario - (Hamilton)

Kanada - Ontario - (London)

Kanada - Ontario - (Toronto)

Kanada - Ontario  - (Ottawa)

Kanada - Ontario - (Windsor)

Kanada - Québec - (Montreal)

KOLUMBIEN - (Medellin)


KROATIEN - (Zagreb)

DÄNEMARK - (Aalborg)

DÄNEMARK - (Kopenhagen)

DÄNEMARK - (Odense)

ESTLAND - (Tallinn)

Ägypten (Alexandria)

FINNLAND - (Helsinki)




DEUTSCHLAND - (Düsseldorf)




Ungarn (Budapest)

IRLAND - (Cork City)

IRLAND - (Galway)

ITALIEN - (Milano)

Italien - Sardinien - (Cagliari)

MAROKKO - (Rabat)


NIEDERLANDE - (Groningen)

NEUSEELAND - (Auckland)

NEUSEELAND - (Christchurch)

NEUSEELAND - (Hamilton)


NEUSEELAND - (New Plymouth)



NEUSEELAND - (Wellington)

NEUSEELAND - (Whangerei)




PORTUGAL - (Lissabon)

SERBIEN - (Glavni Gradovi)



SPANIEN - (Barcelona)

SPANIEN - (La Coruna)

SPANIEN - (Ibiza)

SPANIEN - (Murcia)

SPANIEN - (San Juan - Alicante)

SCHWEDEN - (Gothenburg)

SCHWEDEN - (Stockholm)

SCHWEIZ - (Bern)

SCHWEIZ - (Genf)

SCHWEIZ - (Zürich)

UK - ENGLAND - (London)

UK - ISLE OF MAN - (Douglas)

UK - Lancashir - (Burnley)

UK - Scotland - (Glasgow)

UK - Cornwall - (Truro)

USA - Alaska - (Anchorage)

USA - Arizona - (Flagstaff)

USA - Arizona - (Tucson)

USA - Arkansas - (Hot Springs)

USA - Kalifornien - (Hemet)

USA - CALIFORINA - (Los Angeles)

USA - Kalifornien - (Redding)

USA - Kalifornien - (Sacramento)

USA - Kalifornien - (San Diego)

USA - Kalifornien - (Santa Cruz)

USA - Kalifornien - (San Francisco)

USA - Kalifornien - Orange County - (Newport Beach)

USA - Colorado - (Denver)

USA - Connecticut - (New Haven)

USA - Florida - (Boca Raton)

USA - Florida - (Cocoa Beach)

USA - Florida - (Miami)

USA - Florida - (Tampa)

USA - Georgia - (Gainesville)

USA - Illinois - (Chicago)

USA - Hawaii - (Maui)

USA - Iowa - (Davenport)

USA - Kentucky - (Louisville)

USA - LOUISIANA - (New Orleans)

USA - Maine - (Auburn)

USA - Maryland - (Easton)

USA - Massachusetts - (Worcester)

USA - Minnesota - (St. Paul)

USA - Missouri - (St. Louis)

USA - Montana - (Missoula)

USA - NEVADA - (Black Rock City)

USA - NEVADA - (Las Vegas)

USA - NEVADA - (Reno)

USA - New Jersey - (Red Bank)

USA - New Mexico (Northern)

USA - NEW YORK - (Ithaca)

USA - NEW YORK - (Long Island)

USA - NEW YORK - (New York City)

USA - NORTH CAROLINA - (Asheville)

USA - NORTH CAROLINA - (Charlotte)

USA - NORTH CAROLINA - (Greensboro)

USA - Oregon - (Ashland)

USA - Oregon - (Portland)

USA - Pennsylvania - (Harrisburg)

USA - Pennsylvania - (Pittsburgh)

USA - Pennsylvania - (West Chester)

USA - Pennsylvania - (Wilkes - Barre)

USA - SOUTH CAROLINA - (Charleston)

USA - Tennessee - (Memphis)

USA - Texas - (Austin)

USA - Texas - (Dallas / Metroplex)

USA - Texas - (Houston)

USA - Texas - (San Antonio)

USA - Vermont - (Burlington)

USA - Virginia - (Richmond)

USA - Virginia - (Virginia Beach)

USA - WASHINGTON - (Seattle)

USA - Wisconsin - (Milwaukee)


Bild anklickem: Holger Strom Webseite
Bild anklickem: Holger Strom Webseite


Der Film zeigt eindrucksvolle Beispiele, beginnend beim Einsatz der Atombomben mit ihren schrecklichen Auswirkungen bis hin zu den gesundheitszerstörenden, ja tödlichen Hinterlassenschaften der Atomenergienutzung durch die Energiewirtschaft. Eine besondere Stärke des Films liegt in den Aussagen zahlreicher, unabhängiger Fachleute. Sie erläutern mit ihrem in Jahrzehnten eigener Forschung und Erfahrung gesammelten Wissen Sachverhalte und Zusammenhänge, welche die Befürworter und Nutznießer der Atomtechnologie in Politik, Wirtschaft und Militärwesen gerne im Verborgenen halten wollen.


Prof. Dr. med. Dr. h. c. Edmund Lengfelder



Nicht viel anders gehen Politiker/ Abgeordnete des Deutschen Bundestages mit der hoch toxischen riskanten SRM Geoengineering-Forschung um, um diese riskante Forschung durch die Parlamente zu bekommen.


Es wird mit gefährlichen Halbwissen und Halbwahrheiten gearbeitet. Sie werden Risiken vertuschen, verdrehen und diese Experimente als das einzig Richtige gegen den drohenden Klimawandel verkaufen. Chemtrails sind Stratosphärische Aerosol Injektionen, die  illegal auf globaler Ebene stattfinden, ohne jeglichen Parlament-Beschluss der beteiligten Regierungen.


Geoengineering-Projekte einmal begonnen, sollen für Jahrtausende fortgeführt werden - ohne Unterbrechung (auch bei finanziellen Engpässen oder sonstigen Unruhen) um nicht einen Umkehreffekt  auszulösen.


Das erzählt Ihnen die Regierung natürlich nicht, um diese illegale hochgefährliche RM Forschung nur ansatzweise durch die Parlamente zu bringen.


Spätestens seit dem Atommüll-Skandal mit dem Forschungs-Projekt ASSE wissen wir Bürger/Innen, wie Politik und Wissenschaft mit Forschungs-Risiken umgehen.. Diese Gefahren und Risiken werden dann den Bürgern einfach verschwiegen. 







Am 30. September 2012 ist eine neue Internetplattform zu Climate Engineering online gegangen www.climate-engineering.eu  


Die Plattform enthält alle neuen Infos -Publikationen, Veranstaltungen etc. zu Climate-Engineering.





Gezielte Eingriffe in das Klima?

Eine Bestandsaufnahme der Debatte zu Climate Engineering

Kieler Earth Institute



Climate Engineering:

Ethische Aspekte

Karlsruher Institut für Technologie



Climate Engineering:

Chancen und Risiken einer Beeinflussung der Erderwärmung. Naturwissenschaftliche und technische Aspekte

Leibniz-Institut für Troposphärenforschung, Leipzig


Climate Engineering:

Wirtschaftliche Aspekte 

Kiel Earth Institute



Climate Engineering:

Risikowahrnehmung, gesellschaftliche Risikodiskurse und Optionen der Öffentlichkeitsbeteiligung

Dialogik Stuttgart



Climate Engineering:

Instrumente und Institutionen des internationalen Rechts

Universität Trier



Climate Engineering:

Internationale Beziehungen und politische Regulierung

Wissenschaftszentrum Berlin für Sozialforschung




Illegale Atmosphären-Experimente finden in Deutschland  seit  2012 „täglich“ am Himmel statt.


Chemtrails  -  Verschwörung am Himmel ? Wettermanipulation unter den Augen der Öffentlichkeit


Auszug aus dem Buch: 


Ich behaupte, dass in etwa 2 bis 3 mal pro Woche, ungefähr ein halbes Dutzend  von frühmorgens bis spätabends in einer Art und Weise Wien überfliegen, die logisch nicht erklärbar ist. Diese Maschinen führen über dem Stadtgebiet manchmal auffällige Steig- und Sinkflüge durch , sie fliegen Bögen und sie drehen abrupt ab. Und sie hinterlassen überall ihre dauerhaft beständigen Kondensstreifen, welche auch ich Chemtrails nenne. Sie verschleiern an manchen Tagen ganz Wien und rundherum am Horizont ist strahlend blauer ...
Hier in diesem Buch  aus dem Jahr 2005 werden die anfänglichen stratosphärischen SRM-Experimente am Himmel beschrieben... inzwischen fliegen die Chemie-Bomber ja 24 h Nonstop, rund um die Uhr.





Weather Modification Patente




Umfangreiche Liste der Patente












Von Pat Mooney - Er ist Gründer und Geschäftsführer der kanadischen Umweltschutzorganisation ETC Group in Ottawa.


Im Jahr 1975 tat sich der US-Geheimdienst CIA mit Newsweek zusammen und warnte vor globaler Abkühlung. Im selben Jahr wiesen britische Wissenschaftler die Existenz eines Lochs in der Ozonschicht über der Antarktis nach und die UN-Vollversammlung befasste sich mit identischen Anträgen der Sowjetunion und der USA für ein Verbot von Klimamanipulationen, die militärischen Zwecken dienen. Dreißig Jahre später redeten alle - auch der US-Präsident über globale Erwärmung. 


Wissenschaftler warnten, der Temperaturanstieg über dem arktischen Eis  und im sibirischen Permafrost könnte in die Klimakatastrophe führen, und der US-Senat erklärte sich bereit , eine Vorlage zu prüfen, mit der Eingriffe in das Klima erlaubt werden sollten. 


Geo-Engineering ist heute Realität. Seit dem Debakel von Kopenhagen bemüht sich die große Politik zusammen mit ein paar Milliardären verstärkt darum, großtechnische Szenarien zu prüfen und die entsprechenden Experimente durchzuführen.


Seit Anfang 2009 überbieten sich die Medien mit Geschichten über Geoengineering als "Plan B". Wissenschaftliche Institute und Nobelpreisträger legen Berichte und Anträge vor, um die Politik zur Finanzierung von Feldversuchen zu bewegen. Im britischem Parlament wie im US-Kongress haben die Anhörungen schon begonnen. Anfang 2010 berichteten Journalisten, Bill Gates investiere privat in Geoengineering-Forschung und werde bei Geoengineering-Patenten zur Senkung der Meerestemperatur und zur Steuerung von Hurrikanen sogar als Miterfinder genannt. Unterdesssen hat Sir Richard Branson - Gründer und Besitzer der Fluglinie Virgin Air - verkündet, er habe eine Kommandozentrale für den Klimakrieg eingerichtet und sei für alle klimatechnischen Optionen offen. Zuvor hatte er 25 Millionen Dollar für eine Technik ausgesetzt, mit der sich die Stratosphäre reinigen lässt. 


Einige der reichsten Männer der Welt (z.B. Richard Branson und Bill Gates ) und die mächtigsten Konzerne (z.B. Shell , Boeing ) werden immer beteiligt.


Geoengineering Karte - ETC Group


ETC Group veröffentlicht eine Weltkarte über Geoengineering-Experimente, die groß angelegte Manipulation des Klimas unserer Erde.  Zwar gibt es keine vollständige Aufzeichnung von Wetter und Klima-Projekten in Dutzenden von Ländern, diese Karte ist aber der erste Versuch, um den expandierenden Umfang der Forschungs-Experimente zu dokumentieren. 


Fast 300 Geo-Engineering-Projekte / Experimente sind auf der Karte vertreten, die zu den verschiedenen Arten von Klima-Änderungs-Technologien gehören.

Einfach anklicken und vergrößern..
Einfach anklicken und vergrößern..


Aus der Sicht der reichen Länder (und ihrer Unternehmen) erscheint Geoengineering einfach perfekt. Es ist machbar. Es ist (relativ) billig. Und es erlaubt der Industrie, den Umbau unserer Wirtschaft und Produktionsweise für überflüssig zu erklären.


Das wichtigste aber ist: Geoengineering braucht keinerlei internationale Übereinkunft. Länder, Unternehmen, ja sogar superreiche Geo-Piraten können es auf eigene Faust durchziehen. Eine bescheidene >Koalition der Willigen< genügt vollauf, und eine Handvoll Akteure kann den Planeten nach Belieben umbauen.


Damit wir es nicht vergessen:


Seit 1945  führten die USA, die UdSSR, England, Frankreich und später auch China mehr als 2000 Atomtests durch – über und unter der Erde und ohne Rücksicht auf die zu erwartenden Auswirkungen auf Gesundheit und Umwelt weltweit. Niemand wurde um Erlaubnis gefragt. Wenn das Weltklima zu kippen droht, werden sie da wirklich vor einseitigen Entscheidungen zurückschrecken? 




Warum ist Geo-Engineering nicht akzeptabel..?


SRM Geoengineering kann nicht im Labor getestet werden: Es ist keine experimentelle Labor-Phase möglich, um einen spürbaren Einfluss auf das Klima zu haben. Geo-Engineering muss massiv eingesetzt werden.


Experimente oder Feldversuche entsprechen tatsächlich den Einsatz in der realen Welt, da kleine Tests nicht die Daten auf Klimaeffekte liefern.


Auswirkungen für die Menschen und die biologische Vielfalt würden wahrscheinlich sofort massiv und möglicherweise irreversibel sein.





Hände weg von Mutter Erde (HOME) ist eine weltweite Kampagne, um unserem kostbaren Planeten Erde, gegen die Bedrohung durch Geo-Engineering-Experimente zu verteidigen. Gehen Sie mit uns, um eine klare Botschaft an die Geo-Ingenieure und die Regierungen weltweit zu senden, dass unsere Erde kein ein Labor ist.



Liste der (SRM) Geoengineering-Forschung

Hier anklicken:
Hier anklicken:

http://www.ww.w.givewell.org/files/shallow/geoengineering/Geoengineering research funding 10-9-13.xls


Weltweite Liste der Geoengineering-Forschung SRM Forschungs Länder: 


Großbritannien, Vereinigte Staaten Amerika, Deutschland, Frankreich, Norwegen, Finnland, Österreich und Japan.



In "NEXT BANG!" beschreibt Pat Money neue Risikotechnologien, die heute von Wissenschaftlern, Politikern und mächtigen Finanziers aktiv für den kommerziellen Einsatz vorbereitet werden:


Geo-Engineering, Nanotechnologie, oder die künstliche >Verbesserung< des menschlichen Körpers.


"Die  Brisanz des Buches liegt darin, dass es zeigt, wie die Technologien, die unsere Zukunft bestimmen könnten, heute zum großflächigen Einsatz vorbereitet werden – und das weitgehend unbemerkt von der Öffentlichkeit. Atomkraft, toxische Chemikalien oder genmanipulierte Organismen konnten deshalb nicht durch demokratische Entscheidungen verhindert werden, weil hinter ihnen bereits eine zu große ökonomische und politische Macht stand, als ihre Risiken vielen Menschen erst bewusst wurden.


Deshalb dürfen wir die Diskussion über Geoengineering, Nanotechnologie, synthetische Biologie  und die anderen neuen Risikotechnologien nicht länger den selbsternannten Experten überlassen. Die Entscheidungen über ihren künftigen Einsatz fallen jetzt - es ist eine Frage der Demokratie, dass wir alle dabei mitreden."


Ole von UexküllDirektor der Right Livelihood Award Foundation, die den Alternativen Nobelpreis vergibt



Vanishing of the Bees - No Bees, No Food !


Verschwinden der Bienen  - Keine Bienen, kein Essen !









Solar Radiation Management = SRM

Es ist zu beachten, dass SRM Maßnahmen zwar auf kurzer Zeitskala wirksam werden können, die Dauer ihres Einsatzes aber an der Lebensdauer des CO-2 gebunden ist, welches mehrere Tausend Jahre beträgt.


CDR- Maßnahmen hingegen müssten über einen sehr langen Zeitraum (viele Jahrzehnte) aufgebaut werden, ihr Einsatz könnte allerdings beendet werden, sobald die CO2 Konzentration wieder auf ein akzeptables Niveau gesenkt ist. Entsprechende Anstrengungen vorausgesetzt, könnte dies bereits nach einigen Hundert Jahren erreicht sein.


CDR Maßnahmen: sind relativ teuer und arbeiten viel zu langsam. Bis sie wirken würden, vergehen viele Jahrzehnte


Solar Radiation Management SRM Maßnahmen: billig.. und schnell..



Quelle: Institut für Technikfolgenabschätzung






Solar Radiation Management = SRM


Ironie der Geoengineering Forschung:


Ein früherer SRM Abbruch hätte einen abrupten sehr heftigen Klimawandel zur Folge, den wir in dieser Schnelligkeit und heftigen Form nie ohne diese SRM Maßnahmen gehabt hätten. 


Das, was Regierungen mit den globalen GEO-ENGINEERING-INTERVENTIONEN verhindern wollten, genau das wären dann die globalen Folgeschäden bei der frühzeitigen Beendigung der SRM Forschungs-Interventionen.


Wenn sie diese hoch giftigen SAI - Programme  aus wichtigen Gründen vorher abbrechen müssten, droht uns ein abrupter Klimawandel, der ohne diese GE-Programme nie dagewesen wäre. 


Das bezeichne ich doch mal  als wahre  reale Satire..