Cost analysis of stratospheric albedo modification delivery systems

 

 

Justin McClellan, DavidW Keith and Jay Apt

 

 

Justin McClellan - Aurora Flight Science Corporation, Cambridge, USA

 

David Keith - School of Engineering and Applied Sciences and Kennedy School, Harvard University, Cambridge

 

Jay Apt -Tepper School of Business and Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, USA

 

 

Published 30 August 2012

 

 

Abstract

 

We perform engineering cost analyses of systems capable of delivering 1–5 million metric tonnes (Mt) of albedo modification material to altitudes of 18–30 km. The goal is to compare a range of delivery systems evaluated on a consistent cost basis. Cost estimates are developed with statistical cost estimating relationships based on historical costs of aerospace development programs and operations concepts using labor rates appropriate to the operations. We evaluate existing aircraft cost of acquisition and operations, perform in-depth new aircraft and airship design studies and cost analyses, and survey rockets, guns, and suspended gas and slurry pipes, comparing their costs to those of aircraft and airships. Annual costs for delivery systems based on new aircraft designs are estimated to be $1–3B to deliver 1 Mt to 20–30 km or $2–8B to deliver 5 Mt to the same altitude range. Costs for hybrid airships may be competitive, but their large surface area complicates operations in high altitude wind shear, and development costs are more uncertain than those for airplanes. Pipes suspended by

floating platforms provide low recurring costs to pump a liquid or gas to altitudes as high as 20 km, but the research, development, testing and evaluation costs of these systems are high and carry a large uncertainty; the pipe system’s high operating pressures and tensile strength requirements bring the feasibility of this system into question. The costs for rockets and guns are significantly higher than those for other systems. We conclude that (a) the basic technological capability to deliver material to the stratosphere at million tonne per year rates exists today, (b) based on prior literature, a few million tonnes per year would be sufficient to alter radiative forcing by an amount roughly equivalent to the growth of anticipated greenhouse gas forcing over the next half century, and that (c) several different methods could possibly deliver this quantity for less than $8B per year. We do not address here the science of aerosols in the stratosphere, nor issues of risk, effectiveness or governance that will add to the costs of solar geoengineering.

 

Keywords: geoengineering, albedo modification, solar radiation management, high-altitude aircraft

 

 

 

1. Introduction

 

Geoengineering may be a means to reduce the climate risks while long-term emissions reduction actions take effect. Geoengineering has been defined as: ‘the deliberate large-scale manipulation of the planetary environment to counteract anthropogenic climate change’ (Royal Society 2009).

 

One approach is to disperse particulates at high altitude to reduce the effective solar flux entering the atmosphere (Budyko 1982). Sulfur compounds have been proposed, similar to the compounds emitted during volcanic eruptions that have been found to cool surface temperatures (Keith 2000, Crutzen 2006, Rasch et al 2008a, 2008b). Other particulates may also be suitable (Keith 2010).

 

This paper does not address the effectiveness, risks or social implications associated with the deployment of aerosols to the stratosphere for solar radiation management (SRM). We make rough order-of-magnitude estimates of the costs of transporting a million tonnes of material to the stratosphere for three reasons. First, the basic feasibility of SRM with current technology at low cost has been disputed (Angel 2006, Robock 2008). We think this work demonstrates clearly that it is feasible by showing that several independent options can transport the required material at a cost that is less than 1% of climate damages or the cost of mitigation. Removing this uncertainty is relevant whatever one’s view about implementation of SRM. Second, economists are beginning to explore cost-effectiveness and perform option value calculations to help understand the role of several types of geoengineering in climate policy (Nordhaus 2008, Moreno-Cruz and Keith 2012). Rough order-of-magnitude costs are needed for their work. Third, political scientists and some policy makers are concerned about unilateral action (Victor et al 2009). Our analysis provides insight into what might be possible—at a purely technical level—even for a small country, assuming it is able to procure the aviation services on an open market. Fourth, some atmospheric scientists are working on various methods for creating and dispersing particles other than simple SO2 injection (Pierce et al 2010, Keith 2010, Rasch et al 2008a, 2008b). Novel schemes might reduce environmental risk or increase the specificity of geoengineering (for example, to target polar regions). A low cost of deployment means that one can explore methods that increase the required mass if they bring some other benefits such as reduced risks.

 

As early as 1992, estimates were made of the cost of geoengineering (US National Research Council 1992). Previous work (US National Research Council 1992, Robock et al 2009, Katz 2010) has not benefited from systematic cost estimation techniques developed in the high altitude aircraft industry. Here, we make cost estimates based on statistical cost estimating tools used in the aerospace industry. Our goal is not to examine effectiveness or risks of injecting material into the stratosphere for SRM. The goal is rather to compare a range of delivery systems on a single cost basis. 

 

We consider existing aircraft, a new design airplane optimized for the geoengineering task at altitudes up to 30 km, a new design hybrid airship for the same purpose, rockets, guns, and suspended pipes carrying gas or slurry.

 

The full report on which this paper is based is available as online supplemental data at stacks.iop.org/ERL/7/034019/mmedia.

 

 

 

2. Assumptions about aerosol

 

In so far as was feasible, we have decoupled our study of delivery technology and cost from specific proposals for stratospheric aerosol geoengineering. It is nevertheless necessary to make some assumptions about (a) the mass flux of material that might be used, (b) the altitude and latitude range at which it would need to be delivered, (c) the density of material when carried as payload, and finally (d) the delivery rate per unit distance along the flight track.

 

 

2.1. Mass flux

 

Initial estimates of the amount of sulfur as SO2 required to provide 1 W m􀀀2 of solar flux change were approximately 1 Mt of sulfur per year (Robock 2008). The effectiveness of geoengineering is strongly dependent on the type of particle and the particle size deployed. Most studies of geoengineering have considered the release of SO2 or H2S gas into the stratosphere where over time (1 month) they are converted to condensable H2SO4. Recent work has shown that directly emitting H2SO4 allows better control of particle size (Pierce et al 2010), so 4 Mt yr􀀀1 of S provides a radiative forcing of 2.3 W m􀀀2 an amount roughly equivalent to the anticipated growth in radiative forcing over the next half century (IPCC 2007).

 

 

2.2. Altitude and latitude

 

To a rough approximation the circulation of air in the stratosphere rises from the tropics and descends at middle and high latitudes. Lifetime of air in the stratosphere is longest in the ‘overworld’ corresponding to potential temperatures above that of the tropical tropopause and shorter in the ‘middle world’ roughly corresponding to altitudes between the tropical and polar tropopause heights where air in the stratosphere mixes more rapidly with tropospheric air (Holton et al 1995). These considerations suggest that long lifetimes and even distribution of stratospheric aerosol can be most easily achieved by delivering material in the tropics above the tropical tropopause (Robock 2008, Pierce et al 2010).

 

Models of stratospheric aerosol have confirmed this theoretical insight and suggest that delivery between 18 and 25 km altitudes within a latitude range between roughly 30N and 30S are sufficient to obtain long aerosol lifetimes (Rasch et al 2008a, 2008b, Pierce et al 2010). We note that Katz (2010) ruled out aircraft in large measure because the paper assumed that aerosols needed to be lofted to 30–50 km, although no supporting argument or citations were provided.

 

 

2.3. Density

 

We assume that material to be delivered is a liquid with a density of 1000 kg m􀀀3 (in our gas pipe analysis, a density of 1.22 kg m􀀀3 is assumed). At liquid densities payload volume is not an important constraint for any of the delivery methods, as a result of the insensitivity to small (factor of two) differences in payload density.

 

 

2.4. Linear dispersal rate

 

If the material to be released is a non-condensable gas such as SO2, then delivery rate will make little difference. If, however, one is releasing solid particles that may agglomerate or condensable gas then there will likely be an upper limit to the linear dispersal rate along the track of the dispersing vehicle, where if dispersal rates exceed this limit agglomeration of aerosol would limit efficiency. For the aircraft and airship calculations we have conformed to the analysis of Pierce et al (2010) that release rate should be of order 0.1–0.003 kg m􀀀1 traveled and adopted a value of 0.03 kg m􀀀1. In general imposing an upper limit on dispersal rate increases cost because it requires the aircraft cruise in (roughly) level flight. We note that some delivery options, such as buoyed hoses cannot achieve the low linear dispersal rates and might be inappropriate for some forms of stratospheric aerosol geoengineering.

 

 

3. Cost estimation method

 

We develop cost estimates of airplanes and other engineered systems through the use of statistical cost estimating relationships (CERs). CERs are based on historical costs of development programs and use one or more input variables such as the empty weight of an aircraft, flight hours per year, or change in velocity (1V) of a rocket to solve for a variety of output values such as engineering hours, spare parts cost, or cost of personnel.

 

The RAND Corporation has developed a set of airplane CERs, the Development and Procurement Costs of Aircraft model, or DAPCA (Boren 1976). This CER model is flexible and well suited to a cost prediction for a variety of airplane types and has been updated over time to incorporate statistics for modern airplanes, improving its accuracy. Research, development, testing and evaluation (RDT&E) costs are modeled using an inflation-updated version of the original RAND model. Raymer’s (1999) modified version of the DAPCA model is used as the basis for the RDT&E cost analysis for airplanes and airships. The basis for the cost models is given in section 3 of the supplementary data (available at stacks.iop.org/ERL/7/034019/mmedia).

 

Fuel costs are estimated from the flight time. The duration of the cruise leg is determined from aircraft payload mass, cruise speed and desired release rate of the payload. For existing aircraft, the fuel burn rate (in weight per hour) is determined and used to solve for the fuel weight for each sortie. For new airplane designs, an engine model is used to determine the thrust specific fuel consumption for the engines, then the thrust required and the mission profile are used to determine the fuel weight for the sortie. The peak 2009 jet fuel price paid by Air Transportation Association airlines of $2:01=gallon or $0:68=kg ($0:31=lb) was used in all calculations (ATA 2009). Fuel is approximately 12% of yearly operations costs for most airplane systems; even a doubling of fuel costs will increase operations costs by only 12%, within the uncertainty bounds of the cost estimates.

 

Personnel costs (air crews, site managers, maintenance personnel and logistics) are calculated. Labor rates are determined by surveying the rates for various skill sets from several companies on the US General Services Administration website. In some cases, CERs are used to directly determine labor costs. The supplementary data (available at stacks.iop.org/ERL/7/034019/mmedia) gives the fully burdened labor rates used.

 

For existing airplanes, a single pilot and payload operator (missions under 8 h) are assumed. Their labor rates are multiplied by the number of block hours per year. For new aircraft analysis, flight crews cost per block hour including pilots, copilots, and payload operators, are estimated per the CER given in the supplementary data (available at stacks.iop. org/ERL/7/034019/mmedia).

 

Similarly, the number of maintenance-man-hours per flight hour (MMH=FH) for the existing aircraft is used to determine the yearly number of maintenance labor hours, this is multiplied by the maintainer labor rate. Additionally, 4 logistic personnel, 1 site manager per site and 1 mission director are assumed to work full time and their labor rates are multiplied by 2080 labor hours in a standard year. For new aircraft analysis, flight crews cost per block hour including pilots, copilots and payload operators, are estimated from a CER based on cruise speed and gross weight, as given in the supplementary data (available at stacks.iop.org/ERL/7/ 034019/mmedia). 

 

Maintenance-man-hours per flight hour (MMH/FH) is assumed to be 10 h per flight hour for new design aircraft. MMH/FH for existing aircraft are based on values for currently deployed aircraft given in table 1.

 

Approximately 50% of the maintenance costs of an aircraft come from the spare parts, materials and supplies needed to maintain the aircraft. The CER used estimates the spare parts cost per block hour and per sortie based on the cost of the aircraft, the engine cost and the number of engines per aircraft. A 10% interest rate is used for the cost of capital. The aircraft are depreciated over 20 years, with a residual value of 10% of aircraft initial cost at the end of that period.

 

 

 

4. Existing aircraft

 

Analysis of existing aircraft focused on estimating the cost of acquiring and operating new or used aircraft. If the fleet size represents a large portion of an aircraft’s total production, new aircraft price is used to calculate acquisition costs; otherwise a survey of the used market provided typical used acquisition costs. Costs of conversion of existing aircraft for the geoengineering mission are estimated based on costs of converting passenger aircraft to cargo aircraft. For modified versions of existing aircraft, costs of additional engines are included. Five categories of existing aircraft are examined, each with a representative airplane: large cargo aircraft (Boeing 747-400), zoom climber (Boeing F-15E), business jet (Gulfstream G550/650, C-37A), high performance airlifter (Boeing C-17) and supersonic bomber (Rockwell B-1B). A summary of acquisition and modification costs is in table 1, and details are in section 5 of the supplementary data (available at stacks.iop.org/ERL/7/034019/mmedia).

 

 

 

 

 

 

Existing aircraft are optimized to transport a payload quickly and efficiency over a long distance; they are not optimized for high altitude flight and therefore are poorly suited to the geoengineering mission. Operating existing aircraft at their ceiling, or beyond with expensive modifications, requires lightly loading them, driving fleet size up. The zoom climber type (F-15E) does have high altitude capability, but its size drives fleet size to well over 100 aircraft and fuel consumption makes operations costs the highest of all airplane options examined. Supersonic bombers provide the payload and altitude capability required for geoengineering but the feasibility of acquiring and operating them is questionable and costs are high. Costs grow rapidly as altitude is increased. Figure 1 summarizes the yearly total cost for existing aircraft systems as a function of altitude.

 

 

 

5. New aircraft design

 

To examine new aircraft designed for the geoengineering mission, we use an aircraft design and sizing code originally developed by Aurora Flight Sciences to examine high efficiency transport aircraft. This code is integrated with the CERs discussed above into a parametric analysis software package developed for high altitude aircraft analysis. The parametric package explores 32 combinations of payload mass (103–104 kg), propulsion type (propeller or turbofan), and number of engines (2–8) at six altitudes between 40 and 100 kft. The optimized designs favor 2 engines over greater numbers as engines are a large contributor to RDT&E and acquisition costs as well as spare parts costs. Details are in section 6 of the supplementary data (available at stacks.iop.org/ERL/7/034019/mmedia).

 

 

Figure 1. Yearly total cost (operations, depreciation, and interest) for the existing aircraft systems sized to loft payload at a 1 Mt yr􀀀1 rate. For visual clarity, the F-15E has been abbreviated as F-15 and the 747-400 as 747. ‘Transit distribution’ means an aircraft concept of operations with dispersal taking place during long transit leg between bases. ‘Regional distribution’ means an aircraft concept of

operations with dispersal taking place in a region close to the aircraft base using an out-and-back flight path. Detailed costs for each aircraft examined are provided in the supplementary data (available at stacks.iop.org/ERL/7/034019/mmedia).

 

 

The analysis of new aircraft platforms assumes a 20 yr aircraft design life, consisting of approximately 7000 flight hours per year or about 2000 cycles. This is comparable to a Boeing 737 with a design life of about 150 000 h and 75 000 cycles. Aircraft designs are optimized by depreciating acquisition costs over this 20 yr life.

 

 

 

Figure 2. Cost scaling with payload annual mass flux and altitude. New aircraft design yearly cost, including depreciation, interest (both over 20 yr), and yearly operations costs. Note the logarithmic cost scale. The lowest cost design is shown with its associated uncertainty, and the second-lowest cost design is shown as open symbols.

 

 

 

5.1. New aircraft cost estimates

 

Uncertainty arises in the cost estimating relationships for acquisition and operations costs from the sources discussed in section 6.2 of the supplementary data (available at stacks.iop.org/ERL/7/034019/mmedia); the sensitivity analysis bounds for the 13 uncertainties there are in table 11 of the supplementary data (available at stacks. iop.org/ERL/7/034019/mmedia). The new aircraft RDT&E, acquisition costs, and operations costs with upper and lower uncertainty bounds are shown in section 6.3 of the supplementary data (available at stacks.iop.org/ERL/7/ 034019/mmedia). Combining depreciation and interest for the RDT&E and acquisition costs with yearly operations cost, a

yearly total cost can be determined. This yearly cost is plotted as a function of altitude in figure 2. Uncertainty is included, as are the second-lowest cost airplane designs. There is a noticeable increase in cost above 19.8 km (65 kft) due to the increase in engine development costs and fuel costs.

 

 

 

6. Airships

 

Airships may provide an attractive solution to the mission of payload delivery because of their large payload capacity and long endurance potential. A key enabling innovation has been the use of internal bladders with adjustable pressure (ballonets) that allow dynamic adjustment of vehicle buoyancy. This allows the vehicle to descend after releasing payload without dumping helium. In recent years the concept of hybrid lift airships (HLA) that generate the majority of their lift from buoyant forces but generate a small percentage dynamically due to aerodynamic forces has emerged as a way to reduce vehicle size and improve ground handling. The HLA technology shows promise for geoengineering operations, but the technology is still in its infancy.

 

A turboprop engine model is used for propulsion analysis. Costs of developing or modifying engines are computed using a modified version of the engine CER discussed previously. The hull material and construction are assumed to be sophisticated enough to handle a positive pressure differential without deformation. Ballonets that can take 50% of the volume of the HLA with only 1% helium loss per flight are assumed.

 

 

Figure 3. Hybrid lift airship (HLA) design yearly cost, including depreciation, interest (both over 20 yr), and yearly operations costs for 1 MT yearly payload to altitude. The lowest cost design is shown with its associated uncertainty, and the second-lowest cost design is shown.

 

 

 

Analysis of airships for deployment altitudes of 15, 20, 25 and 30 km with 0, 10 and 20% net heaviness was performed using an optimization model described in section 7 of the supplementary data (available at stacks.iop.org/ERL/ 7/034019/mmedia), where the cost models and sensitivity analyses are also described. Yearly total costs were computed in the same manner as described for aircraft (figure 3). The majority of the airship’s technical risk comes from extending the technology to high altitude.

 

 

 

7. Rocket powered glider

 

An analysis of a rocket powered system was carried out for comparison to airplanes. The concept vehicle utilizes off-the-shelf rocket engines or motors to boost a vehicle and payload to altitude. At apogee, wings are deployed to increase the vehicle’s lift-to-drag coefficient to allow it to glide at altitude and disperse payload. Once dispersal is completed, the wings retract to allow it to descend quickly.

 

Rocket glider cost estimates were developed (table 2 and section 8.1 of the supplementary data available at stacks.iop. org/ERL/7/034019/mmedia); however, a preliminary analysis showed this architecture is several orders of magnitude more costly than other systems.

 

 

 

8. Guns

 

We examined conventional and advanced gun designs, and reexamined a widely cited analysis of guns (US National Research Council 1992) that analyzed the costs of delivering sulfur to the stratosphere for geoengineering. The basis for this analysis is the Iowa-class battleship’s 1600 Mark 7 naval gun.

 

Our scoping analysis of new gun technologies under development that utilize electromagnetics or hydrogen gas suggest that, while these technologies might be preferred for altitudes at or beyond the upper (100 kft) boundary of our study, they would not be preferred for the 50–80 kft altitudes of primary interest (supplementary data section 8.2 available at stacks.iop.org/ERL/7/034019/mmedia). We also note that these new gun technologies are unlikely to be available for non-military uses for some time to come. The 1600 naval guns represent a mature, deployable technology with almost a century of heritage. We consider these, and a modified gun using modern materials. Both were found to exceed the cost of deployment using other systems by one or two orders of magnitude.We give details in section 8.2 of the supplementary data (available at stacks.iop.org/ERL/7/034019/mmedia); a summary is in table 2.

 

 

 

 

9. Floating platform with slurry pipe or gas pipe

 

The practicality of a space elevator is limited by the strength of existing materials. However, the tension in the tether for a stratospheric elevator is less than the yield strength of existing materials, for example, Kevlar. We conducted a preliminary analysis (summarized in table 2) of systems utilizing a lighter-than-air platform to support a pipe, sometimes called a floating platform (Intellectual Ventures 2009, Blackstock et al 2009); see section 8.3 of the supplementary data (available at stacks.iop.org/ERL/7/034019/mmedia).

 

It is important to note that these systems are purely theoretical and are at or beyond the limits of today’s materials and technologies. Analysis was conducted to determine approximate costs for comparison purposes, but uncertainties are very large and true development costs are extremely difficult to predict. Deploying these systems may require significant advancements in fluid mechanics, aerodynamics and material science.

 

 

 

10. Conclusions

 

Delivery of material required for stratospheric solar radiation management appears to be feasible from an engineering standpoint. Costs are comparable to other large engineering projects or aerospace flight operations (see table 1, figure 1 and section 5 of the supplementary data available at stacks. iop.org/ERL/7/034019/mmedia). Yearly costs including interest payments and depreciation for a 1 Mt annual mass delivery rate are about $1B to $2B for a new airplane design (table 2); for 5 Mt those costs are about $5-8B. Airplane geoengineering operations would be comparable to the yearly operations of a small airline, and are dwarfed by the operations of a large airline like FedEx or Southwest (supplementary data section 3.3 and supplementary data table 2). Airships may provide at most a $0.5B initial cost savings over airplanes and are more attractive from a cost standpoint, but require technologies that have not been demonstrated. Other systems such as new design aircraft and possibly hybrid airships, and rockets (although at large expense) provide access to very high altitude. Suspended pipe systems may be competitive and offer the lowest recurring cost per kilogram, but more

thorough analysis is required to determine their true feasibility and refine development cost estimates.

 

To put these cost in perspective, the costs of climate damages or of emission mitigation are commonly estimated to be 0.2–2.5% of 2030 global GDP (Barker et al 2007) equivalent to roughly $200B to $2000B per year. Our estimates of the cost of delivering mass to the stratosphere— likely to be the most substantial part of the cost of SRM deployment—are less than 1% of this figure. We are not making a cost-effectiveness argument, as we are discussing the cost of SRM deployment alone, not costs associated with its risk side-effects. We emphasize that SRM climate forcing cannot perfectly offset the effects of greenhouse gas climate forcing (Ricke et al 2010) and SRM does nothing to counter ocean acidification. When SRM is considered as one element of climate strategy that also includes mitigation and adaptation, it is meaningful to compare costs and in this sense one can conclude that the cost of SRM deployment of quantities sufficient to alter radiative forcing by an amount roughly equivalent to the growth of anticipated GHG forcing over the next half century is low, though SRM does not thereby mitigate the risks of the accumulated GHGs that extend far beyond this time window.

 

 

Figure 4. Comparison of yearly costs ($B) for geoengineering systems delivering 1 Mt yr􀀀1 to the specified altitude. Shaded regions depict the range of uncertainty in cost estimates.

 

 

This does not mean that SRM is a preferred strategy. Such a claim could be sensibly made only after thorough investigation of the implications of risks and of the imperfect climate compensation offered by SRM, and of the costs associated with these issues. It simply means that an attribute of SRM is that it is comparatively inexpensive.

 

Table 2 summarizes our cost results for all systems examined.

 

Figure 4 provides a comparison of all the systems yearly costs (including depreciation, interest, and operation). The high altitude capability of guns and rockets comes at an extremely high cost. The large cost associated with developing high altitude airship and airplane systems is lower than the costs of other non-aircraft high altitude systems. Even with generous uncertainties on the new aircraft and airship systems (shown as shaded regions), the costs of rockets and guns is much larger than the cost of aircraft systems. This conclusion differs sharply from that of Katz (2010), who suggests that rockets are less expensive than guns and that aircraft are infeasible. The discrepancy arises, in part, because Katz focused on aerosol delivery above 30 km. We are unable to resolve the difference in rocket costs because Katz did not provide quantitative cost analysis for rockets.

 

Airships may be lower cost than aircraft at high altitude due to their significant advantage in fuel burn and slightly lower development and acquisition costs, but airship operations at high altitude have never been demonstrated. While airplanes provide flexibility, having low costs at all altitudes, airships may be better suited to large payload, high altitude operations. Gas and slurry pipes may provide a cost competitive solution if low end estimates are accurate but, with considerably higher technological risk, their RDT&E and acquisition cost include large uncertainties and may exceed $20B even if they prove technically feasible.

 

While analysis shows deployment of 1–5 Mt by airplane is possible up to 30.5 km (100 kft), at these altitudes, the need for development of a new high altitude propulsion system provides a large uncertainty to aircraft development costs. Above 24.4 km (80 kft), the assumed $2B cost of engine development could be underestimated, as has been the case with many recent engine development efforts. At altitudes in excess of 60 kft, the airship system provides greater propulsion flexibility than airplanes, but the large surface area of the airship requires a carefully designed structure and powerful propulsion system. With no high altitude airship flight heritage, the airship’s vulnerability to winds and weather are unknown risks. Above about 80 kft, HLA size to generate enough buoyancy as well as the size of the floating platform required to support a gas pipe or slurry pipe become very large. Development of new propulsion for airships would be required, with resulting increase in cost estimate uncertainties. In the 80–100 kft range, the relative simplicity of the gun system begins to look attractive despite the high recurring cost of shells, but only if the payload fraction can be increased.

 

Additional work is required to refine the new airplane and airship designs. Uncertainties in the predicted costs for each can be reduced through more detailed conceptual designs. Similarly, the floating platform system with a gas pipe or slurry pipe costs may be competitive with airplanes and airships, but it is a system with some of the most difficult-to-predict RDT&E costs. A more thorough analysis of the floating platform design and the pipe design is required to obtain more accurate cost for that system. A detailed

structural analysis of the pipe including modeling of wind effects, optimization of pipe to reduce wind effects, modeling of tapered pipe, and trade studies of distributed floatation and pumping will improve understanding of feasibility and cost.

 

 

 

Acknowledgments

 

 

The authors acknowledge helpful commentary from David Whelan and Robert Parks. Funding for this work was provided by the Fund for Innovative Climate and Energy Research (FICER), see http://keith.seas.harvard.edu/FICER.html. The work by Aurora Flight Sciences was funded as a consulting contract by FICER funds administered through the University of Calgary under the direction of David Keith. It is the policy of FICER that all results be placed in the public domain. The full report from Aurora is available at www.keith.seas.harvard.edu/geo.html and is reproduced in reformatted and slightly updated form in the supporting online material associated with this publication.

 

 

 

References

 

Air Transport Association of America 2009 Monthly Jet Fuel and Consumption Report (www.airlines.org/Energy/FuelCost/ Documents/fuel.xls)

 

Angel R 2006 Feasibility of cooling the Earth with a cloud of small spacecraft near the inner Lagrange point (L1) Prog. US Natl Acad. Sci. 103 17184–9

 

Barker T et al 2007 Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Geneva: IPCC) Table SPM4

 

Blackstock J, Battisti D S, Caldeira K, Eardley D M, Katz J I, Keith D W, Patrinos A A N, Schrag D P, Socolow R H and Koonin S E 2009 Climate Engineering Responses to Climate Emergencies (Santa Barbara, CA: Novim)

 

Boren H E 1976 A Computer Model for Estimating Development and Procurement Costs of Aircraft (DAPCA-III) (Santa Monica, CA: RAND)

 

Budyko M I 1982 The Earth’s Climate, Past and Future (New York: Academic)

 

Crutzen P J 2006 Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim. Change 72 211–9

 

Holton J R, Haynes P H, McIntyre M E, Douglass A R, Rood R B and Pfister L 1995 Stratosphere–troposphere exchange Rev. Geophys. 33 403–39

 

Intellectual Ventures Lab 2009 The Stratospheric Shield: A Practical, Low-Cost Way to Reverse Catastrophic Warming of the Arctic—Or the Entire Planet (Bellevue, WA: Intellectual Ventures Lab) (available at http://intellectualventureslab.com/wp-content/uploads/2009/10/Stratoshield-white-paper-300dpi.pdf)

 

IPCC (Intergovernmental Panel on Climate Change) 2007 Fourth Assessment Report (Geneva: IPCC) figure 10.2

 

Katz J I 2010 Stratospheric albedo modification Energy Environ. Sci. 3 1634–44

 

Keith D E 2000 Geoengineering the climate: history and prospect Ann. Rev. Energy Environ. 25 245–84

 

Keith D W 2010 Photophoretic levitation of engineered aerosols for geoengineering Proc. US Natl Acad. Sci. 107 16428–31

 

Moreno-Cruz J B and Keith D W 2012 Climate policy under uncertainty: a case for solar geoengineering Clim. Change at press (doi:10.1007/s10584-012-0487-4)

 

 

Nordhaus W 2008 A Question of Balance: Weighing the Options on Global Warming Policies (New Haven, CT: Yale University Press) p 234 

 

Pierce J R, Weisenstein D K, Heckendorn P, Peter T and Keith D W 2010 Efficient formation of stratospheric aerosol for climate engineering by emission of condensable vapor from aircraft Geophys. Res. Lett. 37 L18805

 

Rasch P J et al 2008a An overview of geoengineering of climate using stratospheric sulfate aerosols Phil. Trans. R. Soc. A 366 4007–37

 

Rasch P J, Crutzen P J and Coleman D B 2008b Exploring the geoengineering of climate using stratospheric sulfate aerosols: the role of particle size Geophys. Res. Lett. 35 L02809

 

Raymer D P 1999 Aircraft Design: A Conceptual Approach (Reston, VA: American Institute of Aeronautics and Astronautics)

 

Ricke K L, Morgan M G and Allen M R 2010 Regional climate response to solar radiation management Nature Geosci. 3 537–41

 

Robock A 2008 20 Reasons why geoengineering may be a bad idea Bull. At. Sci. 64 14–8

 

Robock A, Marquardt A B, Kravitz B and Georgiy S 2009 The benefits, risks, and costs of stratospheric geoengineering Geophys. Res. Lett. 36 L19703

 

Royal Society 2009 Geoengineering the Climate: Science, Governance and Uncertainty (London: The Royal Society)

 

US National Research Council Panel on Policy Implications of Greenhouse Warming 1992 Policy Implications of Greeenhouse Warming: Mitigation, Adaptation, and the Science Base (Washington, DC: National Academic Press) chapter 28 and appendix Q

 

Victor D G, Morgan M G, Apt J, Steinbruner J and Ricke K 2009 The geoengineering option: a last resort against global warming? Foreign Affairs 88 64–76

 

 

 

Quelle: http://iopscience.iop.org/article/10.1088/1748-9326/7/3/034019/pdf

 

 

Ein künstliches Klima durch SRM Geo-Engineering

 

Sogenannte "Chemtrails" sind SRM Geoengineering-Forschungs-Experimente

 

Illegale Feldversuche der SRM Technik, weltweit.

 

 

Illegale militärische und zivile GE-Forschungen finden in einer rechtlichen Grauzone statt.

 

Feldversuche oder illegale SRM Interventionen wurden nie in nur einem einzigen Land der Welt,  je durch ein Parlament gebracht, deshalb sind sie nicht legalisiert und finden in einer rechtlichen Grauzone der Forschung statt. Regierungen wissen genau, dass sie diese Risiko-Forschung, die absichtliche Veränderung mit dem Wetter nie durch die Parlamente bekommen würden..

Climate-Engineering

HAARP - Die Büchse der Pandora in militärischen Händen

 

 

Illegale zivile und militärische SRM Experimente finden 7 Tage die Woche (nonstop) rund um die Uhr statt. 

 

Auch Nachts - trotz Nacht-

Flugverbot.

 

Geo-Engineering Forschung

 

 

Der Wissenschaftler David Keith, der die Geo-Ingenieure Ken Caldeira und Alan Robock in ihrer Arbeit unterstütztsagte auf einem Geo-Engineering - Seminar am 20. Februar 2010, dass sie beschlossen hätten, ihre stratosphärischen Aerosol-Modelle von Schwefel auf Aluminium umzustellen

 

Niemand auf der ganzen Welt , zumindest keiner der staatlichen Medien berichtete von diesem wichtigen Ereignis.

 

 

 

 

Wissenschaftler planen 10 bis 20 Megatonnen hoch toxischer Materialien wie Aluminium, synthetischen Nanopartikeln jedes Jahr in unserer Atmosphäre auszubringen.

 

Die Mengenangaben von SRM Materialien werden neuerdings fast immer in Teragramm berechnet. 

 

  1 Teragramm  = 1 Megatonne

  1 Megatonne  = 1 Million Tonnen

 

 

SAI = Stratosphärische

Aerosol Injektionen mit toxischen Materialen wie:

 

  • Aluminiumoxide
  • Black Carbon 
  • Zinkoxid 
  • Siliciumkarbit
  • Diamant
  • Bariumtitanat
  • Bariumsalze
  • Strontium
  • Sulfate
  • Schwefelsäure 
  • Schwefelwasserstoff
  • Carbonylsulfid
  • Ruß-Aerosole
  • Schwefeldioxid
  • Dimethylsulfit
  • Titan
  • Lithium
  • Kalkstaub
  • Titandioxid
  • Natriumchlorid
  • Meersalz 
  • Calciumcarbonat
  • Siliciumdioxid
  • Silicium
  • Bismuttriiodid (BiI3
  • Polymere
  • Polymorph von TiO2

 


 

 

 

April 2016 

Aerosol Experiments Using Lithium and Psychoactive Drugs Over Oregon.

 

 

SKYGUARDS: Petition an das Europäische Parlament

 

 

Wir haben keine Zeit zu verlieren!

 

 

 

Klage gegen Geo-Engineering und Klimapolitik 

 

Der Rechtsweg ist vielleicht die einzige Hoffnung, Geo-Engineering-Programme zum Anhalten zu bewegen. Paris und andere Klimaabkommen schaffen Ziele von rechtlich international verbindlichen Vereinbarungen. Wenn sie erfolgreich sind, werden höchstwahrscheinlich SRM-Programme ohne ein ordentliches Gerichtsverfahren legalisiert. Wenn das geschieht, wird das unsere Fähigkeit Geoengineering zu verhindern und jede Form von rechtlichen Maßnahmen zu ergreifen stark behindern.

 

Ziel dieser Phase ist es, Mittel zu beschaffen um eine US- Klage vorzubereiten. Der Hauptanwalt Wille Tierarzt wählt qualifizierte Juristen aus dem ganzen Land aus, um sicher zu stellen, dass wir Top-Talente sichern, die wir für unser langfristiges Ziel einsetzen.

 

 

Die Fakten sind, dass seit einem Jahrzehnt am Himmel illegale Wetter -Änderungs-Programme stattfinden, unter Einsatz des Militärs im Rahmen der NATO, ohne Wissen oder Einwilligung der Bevölkerung..

EU-Konferenz und Petition über Wettermodifizierung und Geoengineering in Verbindung mit HAARP Technologien

 

Die Zeit ist gekommen. Anonymous wird nicht länger zusehen. Am 23. April werden wir weltweit gegen Chemtrails und Geoengineering friedlich demonstrieren.

 

Anonymous gegen Geoengineering 

 

 

Wir waren die allerletzten Zeit Zeugen eines normalen natürlichen blauen Himmels.

 

NIE WIEDER WIRD DER HIMMEL SO BLAU SEIN.

 

 

Heute ist der Himmel nicht mehr blau, sondern eher rot oder grau. 

 

 

Metapedia –

Die alternative Enzyklopädie

 

http://de.metapedia.org/wiki/HAARP

 

http://de.metapedia.org/wiki/Chemtrails

 

 

ALLBUCH -

Die neue Enzyklopädie

 

http://de.allbuch.online/wiki/Chemtrails Chemtrails

http://de.allbuch.online/wiki/GeoEngineering GeoEngineering

http://de.allbuch.online/wiki/HAARP HAARP

 

 

 

 

 

SRM - Geoengineering

Aluminium anstatt Schwefeloxid

 

Im Zuge der American Association for the Advancement of Science (AAAS) Conference 2010, San Diego am 20. Februar 2010, wurde vom kanadischen Geoingenieur David W. Keith (University of Calgary) vorgeschlagen, Aluminium anstatt Schwefeldioxid zu verwenden. Begründet wurde dieser Vorschlag mit 1) einem 4-fach größeren Strahlungsantrieb 2) einem ca. 16-fach geringeren Gerinnungsfaktor. Derselbe Albedoeffekt könnte so mit viel geringeren Mengen Aluminium, anstatt Schwefel, bewerkstelligt werden. [13]

 

Mehr Beweise als dieses Video braucht man wohl nicht. >>> Aerosol-Injektionen

 


Das "Geo-Engineering" Klima-Forschungsprogramm der USA wurde direkt dem Weißen Haus unterstellt,

bzw. dort dem White House Office of Science and Technology Policy (OSTP) zugewiesen. 

 

 

Diese Empfehlung lassen bereits das Konfliktpotential dieser GE-Forschung erahnen.

 

 

 

 

 

In den USA fällt Geo-Engineering unter Sicherheitspolitik und Verteidigungspolitik: 

 

 

Geo-Engineering als Sicherheitspolitische Maßnahme..

 

Ein Bericht der NASA merkt an, eine Katastrophensituation könnte die Entscheidung über SRM maßgeblich erleichtern, dann würden politische und ökonomische Einwände irrelevant sein. Die Abschirmung von Sonnenlicht durch SRM Maßnahmen wäre dann die letzte Möglichkeit, um einen katastrophalen Klimawandel abzuwenden.

 

maßgeblich erleichtern..????

 

Nach einer Katastrophensituation sind diese ohnehin illegalen geheimen militärischen SRM Programme wohl noch leichter durch die Parlamente zu bringen unter dem Vorwand der zivilen GE-Forschung. 

 

 

 


Der US-Geheimdienst CIA finanziert mit 630.000 $ für die Jahre   2013/14 

Geoengineering-Studien. Diese Studie wird u.a. auch von zwei anderen staatlichen Stellen NASA und NOAA finanziert. 

 

WARUM SIND DIESE LINKS DER CIA / NASA / NOAA STUDIE ALLE AUS DEM INTERNET WEG ZENSIERT WORDEN, WENN ES DOCH NICHTS ZU VERBERGEN GIBT...?

 

Um möglichst keine Spuren zu hinterlassen.. sind wirklich restlos alle Links im Netz entfernt worden. 

 

 

 

 

 

Es existieren viele Vorschläge zur technologischen Umsetzung des stratosphärischen Aerosol- Schildes.

 

Ein Patent aus dem Jahr 1991 behandelt das Einbringen von Aerosolen in die Stratosphäre

(Chang 1991).

 

Ein neueres Patent behandelt ein Verfahren, in dem Treibstoffzusätze in Verkehrsflugzeugen zum Ausbringen reflektierender Substanzen genutzt werden sollen (Hucko 2009).

 

 

 

Die von Microsoft finanzierte Firma Intellectual Ventures fördert die Entwick­lung eines „Stratoshield“ genannten Verfahrens, bei dem die Aerosolerzeugung in der Strato­sphäre über einen von einem Ballon getragenen Schlauch vom Erdboden aus bewirkt werden soll.

 

CE-Technologien wirken entweder symptomatisch oder ursächlich

 

Symptomatisch wirkend: 

Modifikation durch SRM-Geoengineering- Aerosole in der Stratosphäre

 

Ursächlich wirkend: 

Reduktion der CO2 Konzentration (CDR) 

 

Effekte verschiedener Wolkentypen

 

Dicke, tief hängende Wolken reflektieren das Sonnenlicht besonders gut und beeinflussen kaum die Energie, die von der Erde als langwellige Infrarotstrahlung abgegeben wird. Hohe Wolken sind dagegen kälter und meist dünner. Sie lassen daher mehr Sonnenlicht durch, dafür speichern sie anteilig mehr von der langwelligen, abgestrahlten Erdenergie. Um die Erde abzukühlen, sind daher tiefe Wolken das Ziel der Geoingenieure.

 

 

Zirruswolken wirken also generell erwärmend (Lee et al. 2009). Werden diese Wolken künstlich aufgelöst oder verändert, so wird sich in der Regel ein kühlender Effekt ergeben.

 

Nach einem Vorschlag von Mitchell et al.  (2009) könnte dies durch ein Einsäen von effizienten Eiskeimen bei der Wolkenbildung geschehen.

 

 

Eiskeime werden nur in sehr geringer Menge benötigt und könnten beispielsweise durch Verkehrs-Flugzeuge an geeigneten Orten ausgebracht werden. Die benötigten Materialmengen liegen dabei im Bereich von einigen kg pro Flug.

 

 

Die RQ-4 Global Hawk fliegt etwa in 20 Kilometer Höhe ohne Pilot.

1 - 1,5  Tonnen Nutzlast.

 

Instead of visualizing a jet full of people, a jet full of poison.

 

 

Das Militär hat bereits mehr Flugzeuge als für dieses Geo-Engineering-Szenario erforderlich wären, hergestellt. Da der Klimawandel eine wichtige Frage der nationalen Sicherheit ist [Schwartz und Randall, 2003], könnte das Militär für die Durchführung dieser Mission mit bestehenden Flugzeugen zu minimalen Zusatzkosten sein.

 

http://climate.envsci.rutgers.edu/pdf/GRLreview2.pdf

 

 

 

Die künstliche Klima-Kontrolle durch GE

 

Dies sind die Ausbringung von Aerosolpartikeln in der Stratosphäre, sowie die Erhöhung der Wolkenhelligkeit in der Troposphäre mithilfe von künstlichen Kondensationskeimen.

 

 

 

Brisanz von Climate Engineering  (DFG)

 

Climate-Engineering wird bei Klimakonferenzen (z.B. auf dem Weltklimagipfel in Doha) zunehmend diskutiert. Da die Maßnahmen für die angestrebten Klimaziele bisher nicht greifen, wird Climate Engineering als alternative Hilfe in Betracht gezogen.

 

 

x

 

Umweltaktivistin und Trägerin des alternativen Nobelpreises Dr. Rosalie Bertell, berichtet in Ihrem Buch »Kriegswaffe Planet Erde« über die Folgewirkungen und Auswirkungen diverser (Kriegs-) Waffen..

 

Bild anklicken
Bild anklicken

 

Dieses Buch ist ein Muss für jeden Bürger auf diesem Planeten.

 

..Indessen gehen die Militärs ja selbst gar nicht davon aus, dass es überhaupt einen Klimawandel gibt, wie wir aus Bertell´s Buch wissen (Hamilton in Bertell 2011).

 

Sondern das, was wir als Klimawandel bezeichnen, sind die Wirkungen der immer mehr zunehmenden

Wetter-Manipulationen

und Eingriffe ins Erdgeschehen mittels Geoengineering, insbesondere durch die HAARP-ähnlichen Anlagen, die es inzwischen in aller Welt gibt..

 

Bild anklicken
Bild anklicken

 

 

Why in the World are they spraying 

 

Durch die bahnbrechenden Filme von Michael J. Murphy "What in the World Are They Spraying?" und "Why in the world are the Spraying?" wurden Millionen Menschen die Zerstörung durch SRM-Geoengineering-Projekte vor Augen geführt. Seitdem bilden sich weltweit Bewegungen gegen dieses Verbrechen.

 

 

Die Facebook Gruppe Global-Skywatch hat weltweit inzwischen schon über 90.000 Mitglieder und es werden immer mehr Menschen, die die Wahrheit erkennen und die "gebetsmühlenartig" verbreiteten Lügengeschichten der Regierung und Behörden in Bezug zur GE-Forschung zu Recht völlig hinterfragen. 

 

Bild anklicken: Untertitel in deutscher Sprache
Bild anklicken: Untertitel in deutscher Sprache

 

 


ALBEDO ENHANCEMENT BY STRATOSPHERIC SULFUR INJECTIONS


http://faculty.washington.edu/stevehar/Geoengineering_packet.pdf

 

SRM Programme - Ausbringung durch Flugzeuge 

 

 

 

Die Frage die bleibt, ist die Antwort auf  Stratosphärische Aerosol- Injektions- Programme und die tägliche Umweltzer-störung auf unserem Planeten“

 

 

 

Die Arbeit von Brovkin et al. (2009) zeigt für ein Emissionsszenario ohne Emissionskontrolle, dass der Einsatz von RM für mehrere 1000 Jahre fortgesetzt werden muss, je nachdem wie vollständig der Treibhausgas-induzierte Strahlungsantrieb kompensiert werden soll.

 

 

 

Falls sich die Befürchtung bewahrheitet, dass eine Unterbrechung von RM-Maßnahmen zu abruptem Klimawandel führt, kann sich durch den CE-Einsatz ein Lock-in-Effekt ergeben. Die hohen gesamtwirtschaftlichen Kosten dieses abrupten Klimawandels würden sozusagen eine Weiterführung der RM-Maßnahmen erzwingen.

 

 

 

 

Ausbringungsmöglichkeiten

 

Neben den Studien von CSEPP (1992) und Robock et al. (2009), ist insbesondere die aktuelle Studie von McClellan et al. (2010) hervorzuheben. Für die Ausbringung mit Flugsystemen wird angenommen, dass das Material mit einer Rate von 0,03 kg/m freigesetzt wird. Es werden Ausbringungshöhen von 13 bis 30 km untersucht.

 

 

 

 

Bestehende kleine Düsenjäger, wie der F-15C Eagle, sind in der Lage in der unteren Stratosphäre in den Tropen zu fliegen, während in der Arktis größere Flugzeuge wie die KC-135 Stratotanker oder KC-10 Extender in der Lage sind, die gewünschten Höhen zu erreichen.

x

 

SRM Protest-Märsche gleichzeitig in circa 150 Städten - weltweit.

 

Geoengineering-Forschung als Plan B für eine weltweit verfehlte Klimapolik. 

 

Bild anklicken:
Bild anklicken:

 

Staaten führen illegale Wetter-Änderungs-Techniken als globales Experiment gegen den Klimawandel durch, geregelt über die UN, ausgeführt durch die NATO, mit militärischen Flugzeugen werden jährlich 10-20 Millionen Tonnen hoch giftiger Substanzen in den Himmel gesprüht..

 

Giftige Substanzen, wie Aluminium, Barium, Strontium, die unsere Böden verseuchen und die auch auf Dauer den ph-Wert des Bodens deutlich verändern würden. Es sind giftige Substanzen, wie Schwefel, welches die Ozonschicht systematisch zerstören würde. 

 

x

 

 

 

Weltweite  Protestmärsche gegen globale Geoengineering Experimente finden am 25. April 2015 in all diesen Städten gleichzeitig statt:

 

 

 

AUSTRALIEN - (Adelaide)

AUSTRALIEN - (Albury-Wodonga)

AUSTRALIEN - (Bendigo)

AUSTRALIEN - (Brisbane)

AUSTRALIEN - (Byron Bay)

AUSTRALIEN - (Cairns)

AUSTRALIEN - (Canberra)

AUSTRALIEN - (Darwin)

AUSTRALIEN - (Gold Coast)

AUSTRALIEN - (Hobart)

AUSTRALIEN - (Melbourne)

AUSTRALIEN - (Newcastle)

AUSTRALIEN - (New South Wales, Byron Bay)

AUSTRALIEN - (Perth)

AUSTRALIEN - (Port Macquarie)

AUSTRALIEN - (South Coast NSW)

AUSTRALIEN - (South East Qeensland)

AUSTRALIEN - (Sunshine Coast)

AUSTRALIEN - (Sydney)

AUSTRALIEN - (Tasmania)

BELGIEN - (Brüssel)

BELGIEN - (Brüssel Group)

BRASILIEN - (Curitiba)

BRASILIEN - (Porto Allegre)

BULGARIEN - (Sofia)

Kanada - Alberta - (Calgary)

Kanada - Alberta - (Edmonton)

Kanada - Alberta - (Fort Saskatchewan)

Kanada - British Columbia - (Vancouver Group)

Kanada - British Columbia - (Victoria)

Kanada - Manitobak - (Winnipeg)

Kanada – Neufundland

Kanada - Ontario - (Barrie)

Kanada - Ontario - (Cambridge)

Kanada - Ontario - (Hamilton)

Kanada - Ontario - (London)

Kanada - Ontario - (Toronto)

Kanada - Ontario  - (Ottawa)

Kanada - Ontario - (Windsor)

Kanada - Québec - (Montreal)

KOLUMBIEN - (Medellin)

ZYPERN

KROATIEN - (Zagreb)

DÄNEMARK - (Aalborg)

DÄNEMARK - (Kopenhagen)

DÄNEMARK - (Odense)

ESTLAND - (Tallinn)

Ägypten (Alexandria)

FINNLAND - (Helsinki)

FRANKREICH - (Paris)

DEUTSCHLAND - (Berlin)

DEUTSCHLAND - (Köln)

DEUTSCHLAND - (Düsseldorf)

DEUTSCHLAND - HESSEN - (Wetzlar)

GRIECHENLAND - (Athens)

GRIECHENLAND - (Attica)

Ungarn (Budapest)

IRLAND - (Cork City)

IRLAND - (Galway)

ITALIEN - (Milano)

Italien - Sardinien - (Cagliari)

MAROKKO - (Rabat)

NIEDERLANDE - (Den Haag)

NIEDERLANDE - (Groningen)

NEUSEELAND - (Auckland)

NEUSEELAND - (Christchurch)

NEUSEELAND - (Hamilton)

NEUSEELAND - (Nelson)

NEUSEELAND - (New Plymouth)

NEUSEELAND - (Takaka)

NEUSEELAND - (Taupo)

NEUSEELAND - (Wellington)

NEUSEELAND - (Whangerei)

NEUSEELAND - WEST COAST - (Greymouth)

NORWEGEN-(Bergen)

NORWEGEN - (Oslo)

PORTUGAL - (Lissabon)

SERBIEN - (Glavni Gradovi)

SERBIEN - (Nis)

SLOWENIEN

SPANIEN - (Barcelona)

SPANIEN - (La Coruna)

SPANIEN - (Ibiza)

SPANIEN - (Murcia)

SPANIEN - (San Juan - Alicante)

SCHWEDEN - (Gothenburg)

SCHWEDEN - (Stockholm)

SCHWEIZ - (Bern)

SCHWEIZ - (Genf)

SCHWEIZ - (Zürich)

UK - ENGLAND - (London)

UK - ISLE OF MAN - (Douglas)

UK - Lancashir - (Burnley)

UK - Scotland - (Glasgow)

UK - Cornwall - (Truro)

USA - Alaska - (Anchorage)

USA - Arizona - (Flagstaff)

USA - Arizona - (Tucson)

USA - Arkansas - (Hot Springs)

USA - Kalifornien - (Hemet)

USA - CALIFORINA - (Los Angeles)

USA - Kalifornien - (Redding)

USA - Kalifornien - (Sacramento)

USA - Kalifornien - (San Diego)

USA - Kalifornien - (Santa Cruz)

USA - Kalifornien - (San Francisco)

USA - Kalifornien - Orange County - (Newport Beach)

USA - Colorado - (Denver)

USA - Connecticut - (New Haven)

USA - Florida - (Boca Raton)

USA - Florida - (Cocoa Beach)

USA - Florida - (Miami)

USA - Florida - (Tampa)

USA - Georgia - (Gainesville)

USA - Illinois - (Chicago)

USA - Hawaii - (Maui)

USA - Iowa - (Davenport)

USA - Kentucky - (Louisville)

USA - LOUISIANA - (New Orleans)

USA - Maine - (Auburn)

USA - Maryland - (Easton)

USA - Massachusetts - (Worcester)

USA - Minnesota - (St. Paul)

USA - Missouri - (St. Louis)

USA - Montana - (Missoula)

USA - NEVADA - (Black Rock City)

USA - NEVADA - (Las Vegas)

USA - NEVADA - (Reno)

USA - New Jersey - (Red Bank)

USA - New Mexico (Northern)

USA - NEW YORK - (Ithaca)

USA - NEW YORK - (Long Island)

USA - NEW YORK - (New York City)

USA - NORTH CAROLINA - (Asheville)

USA - NORTH CAROLINA - (Charlotte)

USA - NORTH CAROLINA - (Greensboro)

USA - Oregon - (Ashland)

USA - Oregon - (Portland)

USA - Pennsylvania - (Harrisburg)

USA - Pennsylvania - (Pittsburgh)

USA - Pennsylvania - (West Chester)

USA - Pennsylvania - (Wilkes - Barre)

USA - SOUTH CAROLINA - (Charleston)

USA - Tennessee - (Memphis)

USA - Texas - (Austin)

USA - Texas - (Dallas / Metroplex)

USA - Texas - (Houston)

USA - Texas - (San Antonio)

USA - Vermont - (Burlington)

USA - Virginia - (Richmond)

USA - Virginia - (Virginia Beach)

USA - WASHINGTON - (Seattle)

USA - Wisconsin - (Milwaukee)

 

Bild anklickem: Holger Strom Webseite
Bild anklickem: Holger Strom Webseite

 

Der Film zeigt eindrucksvolle Beispiele, beginnend beim Einsatz der Atombomben mit ihren schrecklichen Auswirkungen bis hin zu den gesundheitszerstörenden, ja tödlichen Hinterlassenschaften der Atomenergienutzung durch die Energiewirtschaft. Eine besondere Stärke des Films liegt in den Aussagen zahlreicher, unabhängiger Fachleute. Sie erläutern mit ihrem in Jahrzehnten eigener Forschung und Erfahrung gesammelten Wissen Sachverhalte und Zusammenhänge, welche die Befürworter und Nutznießer der Atomtechnologie in Politik, Wirtschaft und Militärwesen gerne im Verborgenen halten wollen.

                                             

Prof. Dr. med. Dr. h. c. Edmund Lengfelder

 

 

Nicht viel anders gehen Politiker/ Abgeordnete des Deutschen Bundestages mit der hoch toxischen riskanten SRM Geoengineering-Forschung um, um diese riskante Forschung durch die Parlamente zu bekommen.

 

Es wird mit gefährlichen Halbwissen und Halbwahrheiten gearbeitet. Sie werden Risiken vertuschen, verdrehen und diese Experimente als das einzig Richtige gegen den drohenden Klimawandel verkaufen. Chemtrails sind Stratosphärische Aerosol Injektionen, die  illegal auf globaler Ebene stattfinden, ohne jeglichen Parlament-Beschluss der beteiligten Regierungen.

 

Geoengineering-Projekte einmal begonnen, sollen für Jahrtausende fortgeführt werden - ohne Unterbrechung (auch bei finanziellen Engpässen oder sonstigen Unruhen) um nicht einen Umkehreffekt  auszulösen.

 

Das erzählt Ihnen die Regierung natürlich nicht, um diese illegale hochgefährliche RM Forschung nur ansatzweise durch die Parlamente zu bringen.

 

Spätestens seit dem Atommüll-Skandal mit dem Forschungs-Projekt ASSE wissen wir Bürger/Innen, wie Politik und Wissenschaft mit Forschungs-Risiken umgehen.. Diese Gefahren und Risiken werden dann den Bürgern einfach verschwiegen. 

 

 


 

 

www.climate-engineering.eu

 

Am 30. September 2012 ist eine neue Internetplattform zu Climate Engineering online gegangen www.climate-engineering.eu  

 

Die Plattform enthält alle neuen Infos -Publikationen, Veranstaltungen etc. zu Climate-Engineering.

 

 

 

 

Gezielte Eingriffe in das Klima?

Eine Bestandsaufnahme der Debatte zu Climate Engineering

Kieler Earth Institute

 

 

Climate Engineering:

Ethische Aspekte

Karlsruher Institut für Technologie

 

 

Climate Engineering:

Chancen und Risiken einer Beeinflussung der Erderwärmung. Naturwissenschaftliche und technische Aspekte

Leibniz-Institut für Troposphärenforschung, Leipzig

 

Climate Engineering:

Wirtschaftliche Aspekte 

Kiel Earth Institute

 

 

Climate Engineering:

Risikowahrnehmung, gesellschaftliche Risikodiskurse und Optionen der Öffentlichkeitsbeteiligung

Dialogik Stuttgart

 

 

Climate Engineering:

Instrumente und Institutionen des internationalen Rechts

Universität Trier

 

 

Climate Engineering:

Internationale Beziehungen und politische Regulierung

Wissenschaftszentrum Berlin für Sozialforschung

 

 

 

Illegale Atmosphären-Experimente finden in Deutschland  seit  2012 „täglich“ am Himmel statt.

 

Chemtrails  -  Verschwörung am Himmel ? Wettermanipulation unter den Augen der Öffentlichkeit

 

Auszug aus dem Buch: 

 

Ich behaupte, dass in etwa 2 bis 3 mal pro Woche, ungefähr ein halbes Dutzend  von frühmorgens bis spätabends in einer Art und Weise Wien überfliegen, die logisch nicht erklärbar ist. Diese Maschinen führen über dem Stadtgebiet manchmal auffällige Steig- und Sinkflüge durch , sie fliegen Bögen und sie drehen abrupt ab. Und sie hinterlassen überall ihre dauerhaft beständigen Kondensstreifen, welche auch ich Chemtrails nenne. Sie verschleiern an manchen Tagen ganz Wien und rundherum am Horizont ist strahlend blauer ...
Hier in diesem Buch  aus dem Jahr 2005 werden die anfänglichen stratosphärischen SRM-Experimente am Himmel beschrieben... inzwischen fliegen die Chemie-Bomber ja 24 h Nonstop, rund um die Uhr.

 

 

 

 

Weather Modification Patente

 

http://weatherpeace.blogspot.de

 

Umfangreiche Liste der Patente

http://www.geoengineeringwatch.org/links-to-geoengineering-patents/

 

 

 

 

 

 

 

 

 

 

Von Pat Mooney - Er ist Gründer und Geschäftsführer der kanadischen Umweltschutzorganisation ETC Group in Ottawa.

 

Im Jahr 1975 tat sich der US-Geheimdienst CIA mit Newsweek zusammen und warnte vor globaler Abkühlung. Im selben Jahr wiesen britische Wissenschaftler die Existenz eines Lochs in der Ozonschicht über der Antarktis nach und die UN-Vollversammlung befasste sich mit identischen Anträgen der Sowjetunion und der USA für ein Verbot von Klimamanipulationen, die militärischen Zwecken dienen. Dreißig Jahre später redeten alle - auch der US-Präsident über globale Erwärmung. 

 

Wissenschaftler warnten, der Temperaturanstieg über dem arktischen Eis  und im sibirischen Permafrost könnte in die Klimakatastrophe führen, und der US-Senat erklärte sich bereit , eine Vorlage zu prüfen, mit der Eingriffe in das Klima erlaubt werden sollten. 

 

Geo-Engineering ist heute Realität. Seit dem Debakel von Kopenhagen bemüht sich die große Politik zusammen mit ein paar Milliardären verstärkt darum, großtechnische Szenarien zu prüfen und die entsprechenden Experimente durchzuführen.

 

Seit Anfang 2009 überbieten sich die Medien mit Geschichten über Geoengineering als "Plan B". Wissenschaftliche Institute und Nobelpreisträger legen Berichte und Anträge vor, um die Politik zur Finanzierung von Feldversuchen zu bewegen. Im britischem Parlament wie im US-Kongress haben die Anhörungen schon begonnen. Anfang 2010 berichteten Journalisten, Bill Gates investiere privat in Geoengineering-Forschung und werde bei Geoengineering-Patenten zur Senkung der Meerestemperatur und zur Steuerung von Hurrikanen sogar als Miterfinder genannt. Unterdesssen hat Sir Richard Branson - Gründer und Besitzer der Fluglinie Virgin Air - verkündet, er habe eine Kommandozentrale für den Klimakrieg eingerichtet und sei für alle klimatechnischen Optionen offen. Zuvor hatte er 25 Millionen Dollar für eine Technik ausgesetzt, mit der sich die Stratosphäre reinigen lässt. 

 

Einige der reichsten Männer der Welt (z.B. Richard Branson und Bill Gates ) und die mächtigsten Konzerne (z.B. Shell , Boeing ) werden immer beteiligt.

 

Geoengineering Karte - ETC Group

 

ETC Group veröffentlicht eine Weltkarte über Geoengineering-Experimente, die groß angelegte Manipulation des Klimas unserer Erde.  Zwar gibt es keine vollständige Aufzeichnung von Wetter und Klima-Projekten in Dutzenden von Ländern, diese Karte ist aber der erste Versuch, um den expandierenden Umfang der Forschungs-Experimente zu dokumentieren. 

 

Fast 300 Geo-Engineering-Projekte / Experimente sind auf der Karte vertreten, die zu den verschiedenen Arten von Klima-Änderungs-Technologien gehören.

Einfach anklicken und vergrößern..
Einfach anklicken und vergrößern..

 

Aus der Sicht der reichen Länder (und ihrer Unternehmen) erscheint Geoengineering einfach perfekt. Es ist machbar. Es ist (relativ) billig. Und es erlaubt der Industrie, den Umbau unserer Wirtschaft und Produktionsweise für überflüssig zu erklären.

 

Das wichtigste aber ist: Geoengineering braucht keinerlei internationale Übereinkunft. Länder, Unternehmen, ja sogar superreiche Geo-Piraten können es auf eigene Faust durchziehen. Eine bescheidene >Koalition der Willigen< genügt vollauf, und eine Handvoll Akteure kann den Planeten nach Belieben umbauen.

 

Damit wir es nicht vergessen:

 

Seit 1945  führten die USA, die UdSSR, England, Frankreich und später auch China mehr als 2000 Atomtests durch – über und unter der Erde und ohne Rücksicht auf die zu erwartenden Auswirkungen auf Gesundheit und Umwelt weltweit. Niemand wurde um Erlaubnis gefragt. Wenn das Weltklima zu kippen droht, werden sie da wirklich vor einseitigen Entscheidungen zurückschrecken? 

 

 

 

Warum ist Geo-Engineering nicht akzeptabel..?

 

SRM Geoengineering kann nicht im Labor getestet werden: Es ist keine experimentelle Labor-Phase möglich, um einen spürbaren Einfluss auf das Klima zu haben. Geo-Engineering muss massiv eingesetzt werden.

 

Experimente oder Feldversuche entsprechen tatsächlich den Einsatz in der realen Welt, da kleine Tests nicht die Daten auf Klimaeffekte liefern.

 

Auswirkungen für die Menschen und die biologische Vielfalt würden wahrscheinlich sofort massiv und möglicherweise irreversibel sein.

 

 

 

 

Hände weg von Mutter Erde (HOME) ist eine weltweite Kampagne, um unserem kostbaren Planeten Erde, gegen die Bedrohung durch Geo-Engineering-Experimente zu verteidigen. Gehen Sie mit uns, um eine klare Botschaft an die Geo-Ingenieure und die Regierungen weltweit zu senden, dass unsere Erde kein ein Labor ist.

 

x

Liste der (SRM) Geoengineering-Forschung

Hier anklicken:
Hier anklicken:

http://www.ww.w.givewell.org/files/shallow/geoengineering/Geoengineering research funding 10-9-13.xls

 

Weltweite Liste der Geoengineering-Forschung SRM Forschungs Länder: 

 

Großbritannien, Vereinigte Staaten Amerika, Deutschland, Frankreich, Norwegen, Finnland, Österreich und Japan.

 

 

In "NEXT BANG!" beschreibt Pat Money neue Risikotechnologien, die heute von Wissenschaftlern, Politikern und mächtigen Finanziers aktiv für den kommerziellen Einsatz vorbereitet werden:

 

Geo-Engineering, Nanotechnologie, oder die künstliche >Verbesserung< des menschlichen Körpers.

 

"Die  Brisanz des Buches liegt darin, dass es zeigt, wie die Technologien, die unsere Zukunft bestimmen könnten, heute zum großflächigen Einsatz vorbereitet werden – und das weitgehend unbemerkt von der Öffentlichkeit. Atomkraft, toxische Chemikalien oder genmanipulierte Organismen konnten deshalb nicht durch demokratische Entscheidungen verhindert werden, weil hinter ihnen bereits eine zu große ökonomische und politische Macht stand, als ihre Risiken vielen Menschen erst bewusst wurden.

 

Deshalb dürfen wir die Diskussion über Geoengineering, Nanotechnologie, synthetische Biologie  und die anderen neuen Risikotechnologien nicht länger den selbsternannten Experten überlassen. Die Entscheidungen über ihren künftigen Einsatz fallen jetzt - es ist eine Frage der Demokratie, dass wir alle dabei mitreden."

 

Ole von UexküllDirektor der Right Livelihood Award Foundation, die den Alternativen Nobelpreis vergibt

 

 

Vanishing of the Bees - No Bees, No Food !

 

Verschwinden der Bienen  - Keine Bienen, kein Essen !

 

http://www.beeheroic.com/geoengineering-and-environment

http://www.beeheroic.com/resources

 

 

 

 

 

Solar Radiation Management = SRM

Es ist zu beachten, dass SRM Maßnahmen zwar auf kurzer Zeitskala wirksam werden können, die Dauer ihres Einsatzes aber an der Lebensdauer des CO-2 gebunden ist, welches mehrere Tausend Jahre beträgt.

 

CDR- Maßnahmen hingegen müssten über einen sehr langen Zeitraum (viele Jahrzehnte) aufgebaut werden, ihr Einsatz könnte allerdings beendet werden, sobald die CO2 Konzentration wieder auf ein akzeptables Niveau gesenkt ist. Entsprechende Anstrengungen vorausgesetzt, könnte dies bereits nach einigen Hundert Jahren erreicht sein.

 

CDR Maßnahmen: sind relativ teuer und arbeiten viel zu langsam. Bis sie wirken würden, vergehen viele Jahrzehnte

 

Solar Radiation Management SRM Maßnahmen: billig.. und schnell..

 

 

Quelle: Institut für Technikfolgenabschätzung

 

 

 

 

 

Solar Radiation Management = SRM

 

Ironie der Geoengineering Forschung:

 

Ein früherer SRM Abbruch hätte einen abrupten sehr heftigen Klimawandel zur Folge, den wir in dieser Schnelligkeit und heftigen Form nie ohne diese SRM Maßnahmen gehabt hätten. 

 

Das, was Regierungen mit den globalen GEO-ENGINEERING-INTERVENTIONEN verhindern wollten, genau das wären dann die globalen Folgeschäden bei der frühzeitigen Beendigung der SRM Forschungs-Interventionen.

 

Wenn sie diese hoch giftigen SAI - Programme  aus wichtigen Gründen vorher abbrechen müssten, droht uns ein abrupter Klimawandel, der ohne diese GE-Programme nie dagewesen wäre. 

 

Das bezeichne ich doch mal  als wahre  reale Satire..