Global Policy

 

The Paradox of Climate Engineering

 

Michael Zürn Wissenschaftszentrum Berlin für Sozialforschung

Stefan Schäfer Berlin Graduate School for Transnational Studies

 

 

 

Abstract

 

Climate engineering technologies, sometimes also referred to as geoengineering technologies, attempt to ward off the worst effects of climate change by intervening in the global climate system. We see the potentials offered by climate engineering technologies in counteracting the threats of climate change but also take into account the risks that arise from the side effects of these technologies on natural, social and political systems. We find a paradox of climate engineering, which consists in the circumstance that exactly those technologies that are capable of acting fast and effectively against rising temperatures at comparatively low costs, are also the technologies that are likely to create the greatest amount of social and political conflict. To address this apparent paradox, we argue that an institutional setting for researching and potentially deploying climate engineering technologies is needed which creates a sufficiently high degree of social and political legitimacy and addresses a set of specified problems connected to climate engineering. We present a proposal for such an institutional setting that explicitly addresses these concerns.

 

 

Policy Implications

 

Research on and potential uses of climate engineering technologies need to be coordinated internationally in a multilateral institutional setting. • An international climate engineering agency should be created that coordinates and disseminates research on climate engineering. • Research results should be evaluated by the IPCC. • Decision-making on climate engineering should occur within the UNFCCC, where the states party to that convention should decide on norms and rules that govern climate engineering (regarding, for example, an upper limit for manipulations of the radiation balance, a uniform metric for making different responses to climate change comparable, and a time limited moratorium on field tests and deployments of climate engineering technologies).

 

 

1. International cooperation on engineering the climate?

 

A set of newly emerging high technologies, aimed at altering the global climate in an effort to counteract rising global mean temperatures, has recently begun to enter the scientific, public, and political debates. These technologies, referred to collectively as climate engineering technologies, attempt to offset global climate change by either reducing the concentration of CO2 in the atmosphere (carbon dioxide removal (CDR)) or by reflecting sunlight away from earth (solar radiation management (SRM)). The amount of attention directed at climate engineering technologies will be magnified by the International Panel on Climate Change’s (IPCC) fifth assessment report in 2014, which will address these technologies (IPCC, 2012).

 

Climate engineering promises a cheap solution for global climate change. At the same time, the unintended side effects on natural, social and political systems and the distributional consequences resulting from possible uses of these technologies are highly uncertain, and likely to involve ‘unknown unknowns’. Therefore, it does not come as a surprise that the development and deployment of these technologies are contested.

 

In this contribution, we argue that the advantages of investing in these technologies are dependent upon certain institutional pre-requisites. On the one hand, we assume that it is useful to have a high leverage technology available if a climate crisis occurs. Climatic changes can be swift and ugly, creating unpleasant outcomes that are hard to tolerate. In such a case, adaptation is impractical (Victor, 2011, p. 185) and additional reductions of CO2 emissions do not help since their effects would be felt only decades later. In the absence of suffi- cient emission reductions, climate engineering should be researched as a potential way to avoid such outcomes. On the other hand, we see a paradox of climate engineering that can only be overcome if a rightly designed international institution is in place. Only very few of the proposed technologies fulfill the promise of acting fast at a low price, making them suitable as responses to intolerable climatic changes. Many other climate engineering technologies are as cost-intensive and slow in effect as reducing CO2 emissions is. Moreover, exactly those few technologies that promise to act fast at a low price would also bear the greatest risk of creating political and social resistance and conflict. It is for this reason that the successful development and deployment of climate engineering depends on an international institutional setting which is able to cope with the social and political side effects of climate engineering technologies through appropriate regulation.

 

We begin by examining the cooperation requirements for climate engineering from two perspectives. First, we ask what formal cooperation requirements climate engineering poses based on its implementation costs and its technical requirements. Which climate engineering options are amenable to unilateral or minilateral implementation and at the same time capable of quickly and significantly manipulating the global average temperature? It emerges that some – but far from all – climate engineering technologies can actually be implemented on a unilateral or minilateral basis with the goal of significantly influencing global mean temperatures (section 2).

 

Second, we expand this purely rationalist analysis in section 3 to include sociopolitical factors, asking what social and political side effects might arise from a unilateral or minilateral implementation of climate engineering technologies. Which technologies are likely to provoke social and political conflict in the absence of a legitimate multilateral approach to their research and implementation? We argue here that a unilateral or minilateral implementation of climate engineering measures could trigger a series of problematic consequences, which render the integration of research on and implementation of climate engineering technologies into a multilateral negotiation process advisable.

 

Sections 2 and 3 each result in a typology, which together display analytical power. Most typologies of climate engineering technologies are based on natural science concepts, such as the differentiation between CDR and SRM technologies. We offer two typologies to map climate engineering technologies which are based on social science concepts. The first typology shows which technologies are in fact amenable to unilateral implementation by laying open the requirements for this – they must be efficient (i.e., cheap and effective) and amenable to centralized implementation (as opposed to technologies that require implementation on the territories of many sovereign states to be effective). While this first typology explicates well known economic reasoning, the second typology uses sociological and political reasoning in order to show which technologies are most likely to create considerable social and political contestation and conflict. The fact that these technologies turn out to be the same as those that are amenable to efficient unilateral implementation in the first place lets us speak of a ‘paradox of climate engineering’.

 

Given the paradox of climate engineering, we ask, thirdly, about the institutional prerequisites for the successful development and implementation of climate engineering technologies (section 4). We argue that a certain institutional design is necessary and desirable for internationally governing climate engineering. The institutional solution we propose aims at avoiding several problems that arise in the context of high leverage climate engineering: lack of social and political acceptance, moral hazard, slippery slope and prohibitively high termination costs.

 

 

2. The virtues of climate engineering?

 

Nobel laureate Tom Schelling, in an early piece on the topic, concludes that climate engineering will fundamentally change the way we think about climate change, reducing the issue to the simple question of who is going to pay for the costs of engineering the climate (Schelling, 1996, p. 306). We refer to the understanding that climate engineering provides a unilaterally implementable solution to the problem of rising global mean temperatures as the ‘Schelling thesis’. Schelling’s thesis regarding the politically simple implementation logic of climate engineering is ultimately based on the assumption of a vast efficiency of such measures from an economic point of view. This is vividly expressed by the title of an article by Scott Barrett, ‘The Incredible Economics of Geoengineering’, in which he states programmatically: ‘In contrast to emission reductions, this approach [geoengineering] is inexpensive and can be undertaken by a single country, unilaterally’ (Barrett, 2008, p. 45).

 

The central thesis of the unilateral resolvability of the problems associated with a rise in global mean temperatures through climate engineering is based on two assumptions. First, the costs of such measures must be so low that they can be burdened by an individual state unilaterally or by a small group of states (minilateralism). Additionally, their effectiveness must be so great that they enable the implementing state or group of states to significantly manipulate global mean temperatures. If a technology meets both of these criteria, we consider it to be highly efficient. Second, in order to be implementable uni- or minilaterally, climate engineering technologies need to be amenable to implementation on the territory of a single state, on a limited number of state territories, or in common spaces outside of national jurisdiction.1

 

 

The economic efficiency of climate engineering

 

Are climate engineering technologies indeed cheap and effective (i.e. efficient), and can they be deployed centrally in one location? Only if these conditions are met can a climate engineering technology be considered unilaterally or minilaterally implementable and potentially capable of ‘totally transform[ing] the greenhouse issue’ (Schelling, 1996, p. 305). In order to examine these propositions, we need to take into account the results of economic and natural scientific research.2

 

We operationalize the costs, effectiveness and amenability to centralized implementation of climate engineering technologies in the following way. Regarding costs, we are interested only in the direct costs that arise from the unilateral implementation of the measure in question, and not in external costs that may eventually arise in other locations – only the former are decisive in terms of the Schelling thesis. A climate engineering technology is considered highly efficient if it is not only affordable in this sense but also effective, meaning it must be capable of significantly changing global mean temperatures as a single measure in a relatively short period of time. Additionally, in order to be unilaterally implementable, a climate engineering measure must be amenable to centralized implementation. This means that it must be able to significantly change global mean temperatures when deployed on the implementing state’s territory, on the territories of a small group of cooperating states or in common spaces outside of national jurisdiction. Should a climate engineering measure require decentralized implementation (i.e., in the territories of many states) in order for it to achieve a significant effect on global mean temperatures, then by its very nature it cannot be employed unilaterally with the goal of significantly influencing global mean temperatures, and would require a multilateral approach.3 

 

Based on this operationalization, it emerges that far from all climate engineering technologies conform to the Schelling thesis. Only stratospheric particle injection and marine cloud brightening are both efficient and unilaterally implementable. All the other climate engineering technologies discussed in the literature are either:

 

• too expensive from the beginning, such as mirrors in space (see Robock, 2008; Royal Society, 2009, p. 45),

• too expensive when scaled up to an effective scale, such as afforestation of the Sahara and the Australian outback (see Ornstein, 2009), covering the world’s desert areas with reflective material (see Royal Society, 2009) and enhancing rooftop reflectivity (see Akbari et al., 2009; Royal Society, 2009; Oleson et al., 2010),

• not effective as a single measure to stabilize global mean temperatures on a short timescale (enhanced weathering), or require decentralized implementation to be effective in that sense, such as direct air capture.

 

The only CDR measure that has by some been considered as potentially highly efficient is ocean iron fertilization. This technology is also amenable to centralized implementation. However, the extent of the effectiveness of this measure remains uncertain. Lenton and Vaughan (2009, p. 5593) argue that this measure is not suited for significantly influencing global mean temperatures on a short timescale. There is also uncertainty with regard to the costs of extensive ocean fertilization. In view of this, the efficiency of this measure can also be considered insufficiently high for it to be amenable to unilateral or minilateral implementation.

 

 

 

 

Figure 1: Typology 1 below sums up these findings. It emerges that only stratospheric particle injection and marine cloud brightening are amenable to unilateral or minilateral implementation. Large scale direct air capture, large scale afforestation, the enhancement of rooftop reflectivity, the modification of deserts to reflect more sunlight, ocean fertilization, reflectors in space, and enhanced weathering are either too expensive, not effective enough to significantly influence global mean temperatures, or require decentralized implementation, thus requiring the participation of many states and consequently a multilateral approach to their implementation. For example, measures such as the massive afforestation of the Sahara and the Australian Outback or the covering of the world’s deserts with reflective material cannot be carried out unilaterally, but by their very nature require a multilateral approach. The implementation of such projects appears highly unlikely.

 

 

3. The social and political miseries of a unilateral or minilateral climate engineering policy

 

The thesis of a unilateral or minilateral solution to the problem of rising global mean temperatures through climate engineering is based on the rationalist theory of cooperation in international relations (compare Schelling, 1960; Keohane, 1984, Zürn 1992). The simplest version of this theory, from which the Schelling thesis is derived, is based on two premises. First, it assumes that states are the key actors in international politics and can act relatively autonomously, meaning without consideration for transnational norms and actors or changing domestic interest constellations, only taking into account the commitments they made regarding international law. Second, it assumes that state interests with regard to a specific problematic situation are fixed and are not influenced by international negotiation processes. This approach is powerful for identifying intergovernmental interest constellations, but runs the risk of losing sight of the dynamic component of political interaction processes and the role of transnational norms and actors.

 

 

 

On the social and political consequences of a unilateral climate engineering policy

 

It can be expected that the unilateral implementation of a climate engineering technology will result in the comprehensive politicization of such activities. Decision-making processes, institutions and policy outcomes are considered politicized when they become the target of strong social mobilization with a high degree of contestation (on the politicization of international institutions, see Zürn, Binder and Ecker-Ehrhardt, 2012). Transnational norm entrepreneurs such as Greenpeace and other nongovernmental organizations (NGOs) can mobilize a high level of political resistance by recourse to internationally recognized norms (Keck and Sikkink, 1998). It is especially likely for such a development to occur in Europe, since the potential for mobilizing the general publics against the introduction of new technologies has been traditionally high on the continent. Moreover, one can expect that the North-South antagonism in international climate policy would likely be intensified in case of unilateral deployment of efficient climate engineering technologies.

 

In the context of the Conference of the Parties to the CBD, the international community already submitted in part to the pressure exercised by several transnational NGOs with the support of some developing countries. The following was stated in a decision (UNEP ⁄CBD⁄ COP 10 Decision X ⁄ 33):

 

[The Conference of the Parties […] invites Parties and other Governments […] to […] ensure] that no climate-related geo-engineering activities that may affect biodiversity take place, until there is an adequate scientific basis on which to justify such activities and appropriate consideration of the associated risks for the environment and biodiversity and associated social, economic and cultural impacts, with the exception of small scale scientific research studies that would be conducted in a controlled setting.

 

This very vague formulation and the legally non-binding nature of the CBD do not make it impossible for any state to field-test or implement climate engineering measures. Nevertheless, the inclusion of the topic in the convention is indicative of an increased awareness of climate engineering on the part of societal and political actors.

 

Growing social resistance against climate engineering can also be witnessed in other places. For example, the transnational NGO ‘ETC Group’ is active in the area of climate engineering. The ETC Group sets forth several arguments against climate engineering, including unequally distributed regional effects (ETC Group, 2009), the possibility of military use, and the potential role private sector interests could play (ETC Group 2010a, 37ff.). They also recur to international law in their rejection of climate engineering (for example to the ENMOD treaty in ETC Group, 2010b).

 

A further politicization of decisions regarding climate engineering and the institutions involved in making these decisions – which can already be witnessed in its beginnings – can be expected for several reasons. First, climate engineering fulfills all of the preconditions for the mobilization of social resistance that generally arise from the technocratic imposition of risk technologies in a global risk society (see Beck, 2008). Therefore, a strong connection can be expected between social movements in the implementing countries and a corresponding transnational protest movement. Second, in view of the non-involvement of technologically less powerful states, the hitherto unclear distribution of climate effects and the side effects arising from an implementation of climate engineering could evoke the North-South schism on a comprehensive scale and cause permanent damage to the United Nations Framework Convention on Climate Change (UNFCCC) process as a target of anti-hegemonic resistance (Rajagopal, 2003). Finally, both forms of resistance, social and political, could invoke general principles of international law (UNCLOS, Art. 195; Outer Space Treaty, right of consultation; Antarctic Treaty, peaceful purposes; Montreal Protocol, protection of the ozone layer; etc.), as well as the more specific provisions in the CBD and the London Convention and its Protocol. These norms do not contain clear provisions prohibiting climate engineering. They provide, however, a suitable normative anchor to serve as ‘political opportunity structure’ for resistance (della Porta and Tarrow, 2005; Tarrow, 2005).5

 

Moreover, dynamic processes of conflict escalation are conceivable. Third countries negatively affected by unilateral climate engineering could resort to radical opposition in the context of the UNFCCC process, and, in a very extreme case, even adopt counter measures – ‘counter-climate engineering’, (Lane, 2010). To this end, fluorocarbons could be deployed to counter the cooling effect from climate engineering, or black coal could be released to decrease the earth’s reflectivity (see also Horton, 2011, p. 62).

 

In general, should environmental damage arise in a third country as a result of a unilateral climate engineering intervention, this is likely to lead to international conflict. Conflict might even occur in the absence of a clearly established causal link between environmental damage in a third country and a unilateral climate engineering intervention. A unilateral climate engineering intervention could thus be blamed for the occurrence of weather events even if it is not entirely clear that it was the climate engineering intervention that caused these events, substantially increasing the potential for international conflict.

 

In any case, the current absence of indications for a manifestation of interstate conflicts should not lead to predictions concerning their (un)likelihood in case climate engineering is implemented unilaterally. The regional effects of climate interventions will be unevenly distributed and thus are likely to lead to conflicts that could undermine the basis of cooperation on climate policy.

 

The social and political side effects likely to arise in reaction to a unilateral or minilateral implementation of climate engineering technologies bear witness to the legitimacy deficit inherent to such an approach, and can be expected to undermine the success of the implemented technologies. The most important circumstance out of which this legitimacy deficit arises is the fact that not only those states that proceed to intervene in the global climate are affected by this intervention. There is thus a lack of ‘input congruency’ (Zürn, 1998, p. 237) – not all parties affected by the intervention are involved in the decision-making process leading up to the intervention.

 

 

The specific social and political consequences of individual climate engineering technologies

 

In general terms we maintain that a unilateral or minilateral climate engineering intervention can have social and political consequences that undermine its chances for success. In order to undertake a more detailed assessment of this assertion, a second typology (Figure 2) of climate engineering technologies is introduced below. Here, climate engineering technologies are differentiated based on a political-legal perspective. We examine whether their implementation involves common spaces outside national jurisdiction (on this concept see Wolfrum, 1984) or state territories, and whether the undesired side effects resulting from their implementation are likely to remain local or tend to be global in nature.

 

 

 

First, we expect the social and political side effects of a unilateral or minilateral climate intervention to be especially strong in cases which involve the use of common spaces outside national jurisdiction, where no claim to sovereignty can be made. Second, we expect that measures producing undesired side effects that tend to be global in nature are conducive to strong politicization. On this basis, we can now identify the measures in field 2 as being at an especially high risk of undermining their own effectiveness by provoking social and political conflict when implemented unilaterally or minilaterally. This concerns exactly those measures that are sufficiently efficient to render their unilateral use in a climate emergency possible in the first place. In other words, precisely those measures which we identified above as potentially unilaterally or minilaterally implementable are those that incorporate the greatest potential in terms of generating politicization and resistance. Here, the explanatory character of our second typology emerges: even those few technologies that conform to the Schelling thesis are unlikely to be successfully implemented by a single state or a small group of states, due to their inherent conflict potential. This is what we label the paradox of climate engineering (see also Rayner, 2010).

 

This paradox is what seems to drive NGOs that oppose climate engineering. ‘Hands Off Mother Earth’ (HOME) is an association of different organizations which is exclusively devoted to resistance against climate engineering technologies.6 Its objective is ‘[…] to build a global movement to oppose real world geoengineering experiments […]’ (HOME, 2011a). The climate engineering technologies mentioned on the HOME website and against which the organization’s protest is directed are the production and storage of biochar, the introduction of sulfur particles into the stratosphere, marine cloud brightening and the storage of CO2 in the ocean through nutrient fertilization (HOME, 2011b). With the exception of the production and storage of biochar, these are all measures that have extensive trans boundary effects and can be implemented in common spaces outside national jurisdiction.7

 

This means in turn that climate engineering technologies which are not amenable to unilateral or minilateral implementation are likely to generate less social and political conflict. The modification of rooftops, afforestation, the enhancement of natural weathering and air capture offer a comparatively low conflict potential. As yet, no significant social or political mobilization processes have arisen in opposition to these proposals. Also, proposals for scaling up originally local measures to increase their leverage, such as ‘greening’ the Sahara and the Australian outback or covering the world’s deserts in reflective material, have not led to notable reactions. This is likely to be to a large degree due to the clear requirement of multilateral action on such projects, which makes them appear less threatening, and the associated fact that such projects are highly unlikely to be realized.

 

The examination of the social and political consequences of individual climate engineering technologies shows that climate engineering faces a seemingly irresolvable paradox. The promise of a fast and highly effective solution to the problems associated with rising global mean temperatures, which is so cheap that it can be implemented by a few states on behalf of all humanity, is provided by only two climate engineering technologies: stratospheric particle injection and marine cloud brightening. However, these are precisely those technologies that are likely to lead to particularly vehement politicization and far-reaching social and political resistance with potentially devastating consequences for the UNFCCC process.

 

 

4. Overcoming the paradox: Proposal of an institutional design for the governance of climate engineering technologies

 

In spite of the paradox of climate engineering, research on high leverage climate engineering technologies seems in principle advisable for several reasons. Due to the high costs arising from the necessary transition to a carbon neutral economy, all options that could contribute to reducing the costs of this transition should be explored. Furthermore, the difficulty of achieving international agreement on reducing emissions and the longevity of greenhouse gases in the atmosphere make it desirable to have an option available that allows us to shave off the worst effects of climate change.8 Most importantly, some authors have suggested that climate change might occur dramatically and abruptly if socalled ‘tipping points’ are passed (on tipping points in the climate system see Lenton et al., 2008). If researched today, highly effective climate engineering technologies would be made available for cases of ‘climate emergencies’ (Victor, 2011, chap. 6).

 

However, research on and implementations of climate engineering technologies can only overcome the paradox and produce the desired results if four potential side effects are addressed. First, research on climate engineering technologies needs to possess a sufficient amount of social and political acceptance. In the absence of this acceptance, negative social and political reactions are likely to preempt the development of a possibly important technological option to counteract climate change, which might be needed in the future. Second, ‘moral hazard’ effects need to be avoided. This term refers to negative effects of research on or implementations of climate engineering technologies on emission reduction efforts. Third, the slippery slope effect needs to be restricted. This describes situations in which conducting research on climate engineering technologies might increase the likeliness of deployment. For example, this can refer to the fear that an institution conducting research on climate engineering measures would develop an interest in conducting further research and eventually pressure for the use of climate engineering technologies, even in the absence of a situation that would warrant such a course of action. Finally, since the premature abandonment of an ongoing climate engineering intervention might have catastrophic consequences, the fourth criterion consists in avoiding such premature abandonment as far as possible and in minimizing the risks associated with it. This has also been referred to as the termination problem. Research on and possible implementations of climate engineering technologies thus require an institutional setting which creates a sufficiently high degree of social and political acceptance, specifically addresses the moral hazard and the slippery slope effect, and ameliorates the termination problem. The fulfillment of these criteria – each of them mostly discussed in separate discourses – is necessary to overcome the climate engineering paradox. Thus, an institutional solution is offered to overcome the paradox.

 

A multilateral approach to climate engineering would be capable of reducing these side effects of climate engineering technologies. Below, we propose six features for a multilateral institutional setting that directly address the criteria developed above in the context of the paradox of climate engineering, identi- fied in sections 2 and 3.9 This institutional setting draws on core elements of the existing regime complex for international climate policy (Keohane and Victor, 2011), including the UNFCCC, the IPCC, and the Kyoto Protocol.10

 

We develop our proposal for an appropriate institutional setting against the background of analyses about the effectiveness of international environmental regimes (Haas et al., 1993; Young, 1999; Miles et al., 2001, Breitmeier et al., 2006) and corresponding research on international institutional design (Ostrom, 1990; Koremenos et al., 2001). We also take into account the existing literature on the multilateral regulation of climate engineering.11 Virgoe’s (2009) considerations on the international regulation of climate engineering come closest to the proposal presented in the following section. He sees the danger of strong international tensions emerging in the event of a unilateral deployment, which would result from the lack of legitimacy inherent to such an approach. A consortium of states on the other hand would be exposed to a conflict of objectives between the ability to act on the one hand and the requirement of achieving a high degree of legitimacy on the other, and would be unstable in the long run. He thus opts for a multilateral framework. Such a multilateral framework can in our view contain minilateral initiatives by a club of states capable and willing to do research, as long as this is embedded within a larger framework (see Victor, 2011, chap. 7). Our proposal consists of three principles and six components. Three institutional principles must guide research and deployment of climate engineering in order to overcome the four potential side effects identified above:

 

• transparent coordination of efforts should dominate research and deployment competition in order to achieve social and political acceptance, and to ensure that a potential future deployment takes place based on the best available scientific knowledge;

 

• institutional integration with existing climate policy should dominate institutional fragmentation in order to ensure that past achievements in setting emission reduction requirements do not suffer, and that future efforts to this end are not preempted, thus avoiding moral hazard;

 

• a clear distinction between research and deployment is needed to allow for political decisions after sufficient knowledge is available, thus avoiding slippery slope effects and the termination problem.

 

 

More specifically, we see six components of such an international institution as necessary.

 

1. An international climate engineering agency should coordinate research into individual climate engineering technologies.12 To this end, a coalition of states needs to be formed that is prepared to finance and carry out the corresponding research in a transparent manner. To ensure incentives to participate, member states should be able to credit contributions against CO2 efforts (see also component 4). To ensure broad acceptance, information on funded projects needs to be made available to the public, perhaps through an online registry. While members of the club should be asked to finance their climate engineering research efforts exclusively via the agency, we do not expect there to be no research on climate engineering outside of agency-funded projects; however, the availability of funding per se, paired with the high visibility and legitimacy gains associated with agency-funded research and the associated assurance of a smooth research process, should provide a strong incentive for scientists to engage with the agency and apply for funding. Researchers conducting research projects on climate engineering that are not funded through the agency should be encouraged to also register their projects, leading to a strong norm of transparency. This will create a vibrant research program that sets standards and norms for research on climate engineering. In sum, the agency is intended to ensure the availability of funding for climate engineering research, increase the transparency of research, contribute to the development of norms and standards in climate engineering research, and to conduct institutional oversight according to a regulatory code that is to be developed.13 This would generally increase the legitimacy of climate engineering research.

 

2. The assessment of the research outcomes, however, should be undertaken by the Intergovernmental Panel on Climate Change (IPCC). Three reasons speak for this task sharing arrangement between the IPCC and the proposed climate engineering agency. First, due to the enhanced consultation commitments of the IPCC, the range of the actors involved is considerably wider than in the proposed climate engineering agency, the members of which are to be drawn from countries actively involved in research. Charging the IPCC with the assessment of research results would thus increase the social and political acceptance of this research.14 Second, the assessment of research into climate engineering on the one hand and of research into climate change more generally on the other would occur in an integrated manner, thus also taking into consideration climate policy alternatives and the overall problem of climate change. This would reduce the risk of climate engineering being perceived as an alternative to emission reductions, thus reducing the risk of moral hazard. Most importantly, the institutional interest of a climate engineering agency in increasing its own standing and relevance through positive evaluations of climate engineering research would be preempted, thus reducing the risk of a slippery slope effect. Very much in line with this suggestion, such an assessment of climate engineering research will be part of the IPCC’s Fifth Assessment Report (AR5). The IPCC’s Expert Meeting on Geoengineering also suggested drafting a special report on the topic.

 

3. On the basis of the IPCC assessment, the member states of the UNFCCC should then proceed to make decisions regarding norms and rules for governing climate engineering.15 These norms and rules should govern which technologies are to be further developed and made ready for deployment, which field research will be allowed for this purpose, and which technologies are to be deployed under which conditions. The checks and balances created by an institutional setting in which the climate engineering agency functions as research coordinator, the IPCC as evaluator and the UNFCCC as political decision maker allows for a clear separation between research and deployment, thus helping to avoid slippery slope effects. While the UNFCCC process, including the IPCC, seems for many discredited after the ongoing failure to achieve a strong international climate regime to reduce CO2 emissions, there is no alternative for multilateral norms and rules than agreement by the member states. Moreover, by introducing climate engineering to the package that is negotiated, the current deadlock could be overcome since it strengthens those states that have an interest in acting on climate change and broadens the portfolio of available measures. It thus creates new possibilities for issue-linkage, introducing to the negotiations novel responses to climate change that are not (yet) strongly politicized.

 

The following three components provide further suggestions for potential rules that should guide such an institutional effort. Such rules will need to be worked out in more detail, of course.

 

4. To avoid moral hazard and a one-sided focus on climate engineering, climate engineering technologies should be made comparable to conventional emission reductions by installing a uniform metric for comparison. Since climate engineering technologies, and especially SRM technologies, are not of themselves comparable to mitigation due to the huge differences in effectiveness and costs, this needs to be achieved via an external factor. A price conversion mechanism thus should be created which compensates for the higher effectiveness of climate engineering technologies where this is appropriate. The contributions of states to the costs arising from the development and deployment of climate engineering technologies should thus be measured according to how much the same contribution would have achieved when invested in conventional mitigation, thus adjusting the comparison between the costs of mitigation and the costs of climate engineering according to the desired goal of avoiding a use of climate engineering as a substitution for mitigation. This would create cost equivalence, as opposed to effectiveness equivalence, between different climate engineering technologies and conventional emission reductions.

 

As a result, it would be possible to extend the portfolio of climate-effective measures whose implementation can be accredited to the reduction targets laid down in the Kyoto process in the future. The implementation of direct air capture, enhanced natural weathering, and increasing the reflectivity of rooftops could thus be accredited to international reduction targets,16 as is already the case with afforestation.17 Within this uniform metric, CO2 could be selected as a reference measure, as already applies to the conversion of the climate effects of other greenhouse gases such as CH4 or N2O. This is intended to preempt an interpretation of climate engineering technologies as an alternative to emission reductions by ranking their effectiveness adjusted to the effectiveness of conventional mitigation. Similarly as an upper limit on conscious interventions into the radiation balance (see component 6), this measure would contribute to an understanding of SRM as a transition technology capable of helping societies avoid the worst effects of global climate change without substituting for mitigation.

 

5. To limit the risk of a slippery slope effect, a time-limited moratorium on the implementation and field testing of climate engineering technologies should be installed. The technologies in field 3 of typology 2 (those which can be implemented on sovereign territory and whose effects remain local) need to be exempted from such a moratorium. Research on all other technologies would be affected by this measure. The moratorium needs to be time-limited so as not to prematurely prescribe an institutional blockade.18 However, so as not to initiate a slippery slope effect after the moratorium has expired, field testing and deployment would still need to follow the rules set down by the UNFCCC.

 

6. In order to counteract the termination problem, a state should be obliged to significantly increase its emission reduction efforts should it abandon a multilateral climate engineering effort. In order to keep the problem in a feasible range, a possible base rule could be to decide not to alter the radiation balance by more than a certain value, such as 1 W ⁄ m2 . This would defuse the termination problem to a certain extent, since the pressure to reduce greenhouse gas concentrations would remain stronger than under a scenario in which forcing is offset to a larger degree. This would point in the direction of an understanding of SRM as a means to shave off the worst effects of climate change, rather than as a complete substitute for emission reductions. In addition, this would likely reduce the potential extent of negative side effects on natural systems in comparison to a scenario in which a stronger intervention is undertaken. Coupling emission reduction requirements to the exit option of a multilateral climate engineering intervention would provide a strong legal basis for pressuring individual states to reduce their emissions. The costs associated with the avoidance of accelerated climate change in the case of premature termination could thus be imposed on the countries that were involved in driving the climate engineering intervention.

 

 

Conclusions

 

The above analysis shows that an institutional setting for the governance of climate engineering research and implementation is desirable which ensures sufficient international and transnational social acceptance and integrates climate engineering with existing climate regulations in such a way that negative social and political effects can be avoided. To this end, we presented a recommendation which proposes the creation of a climate engineering agency for coordinating and conducting research, an assessment of research results through the IPCC, the definition of norms and rules governing climate engineering through the member states of the UNFCCC, installing a uniform metric for creating comparability between SRM, CDR and conventional mitigation measures, installing a time-limited moratorium on field testing and deployment of certain technologies, and the definition of terms for phasing out a climate engineering intervention. If climate engineering is deployed in the absence of such a multilateral institutional framework, it is likely that the problems associated with lacking social and political acceptance, moral hazard, slippery slope, and premature termination fully manifest themselves.

 

 

Notes

 

We would like to thank Peter Haas, Alan Robock, David Victor and Oran Young for critical comments on an earlier version of this piece. We also greatly benefitted from the collaboration with our colleagues involved in the drafting of the scoping report on climate engineering (Rickels et al., 2011), commissioned by the German Federal Ministry of Education and Research, and from the discussion of an earlier version of this piece in the colloquium of the research group Transnational Conflicts and International Institutions at the Social Science Research Center Berlin.

 

 

1. In addition, the Schelling thesis assumes that international law does not formally stand in the way of such a solution. Legally binding prohibitions on the use of climate engineering technologies do indeed not exist in international law. International law however does not explicitly allow the use of climate engineering technologies either. We thus concur with Wiertz and Reichwein (2010, p. 17) that whether and to what extent international law applies to research on and uses of climate engineering depends on the political interpretation of existing treaties (see also Virgo, 2009; Zedalis, 2010; Proelss and Güssow, 2011).

 

2. We thus inherit the uncertainty of the respective assessments. While it has been shown by natural scientists that individual climate engineering technologies are capable of manipulating earth’s energy balance on a large scale, and economists have shown that the direct costs for these technologies appear to lie significantly below the costs of conventional emission reductions, these results remain freighted with large uncertainty.

 

3. Via the criterion of effectiveness we operationalize what is referred to in the natural scientific literature as ‘scalability’ (Caldeira and Keith, 2010, p. 60).

 

4. In this typology, the efficiency criterion refers exclusively to the capability of a climate engineering technology to significantly influence global mean temperatures on a short timescale (effectiveness) at relatively low costs (affordability). Measures whose efficiency is here listed as being ‘low’ can thus nevertheless, on a medium to long timescale and in combination with emission reductions, be part of a portfolio system of policy measures aimed at reducing the risks that result from rising global mean temperatures, and should not be disregarded. Lenton and Vaughan (2009, p. 5539) state that ‘[s]trong mitigation, combined with global-scale air capture and storage, afforestation, and biochar production, i.e. enhanced CO2 sinks, might be able to bring CO2 back to its pre-industrial level by 2100 […]’.

 

5. As mentioned before, the legal situation is starkly underdetermined and thus allows the use of international law for very different positions.

 

6. The HOME campaign currently lists 107 organisations as ‘allies and endorsers’ on its website (HOME, 2011c).

 

7. However, even resistance against the production and storage of biochar is justified by referring to the large area that is necessary for the use of this technology, thus indirectly conforming to our thesis: ‘The biggest danger of biochar for geoengineering, however, is scale. Hundreds of millions of hectares of land likely needs to be turned over to new plantations in order to produce the quantities of biochar many talk about’ (HOME, 2011d).

 

8. Biermann et al. (2010) and Victor (2011) together provide for a very good overview on the efforts and problems in creating effective climate governance.

 

9. While the inclusion of core elements of the existing international regime complex for climate change and the fact that certain aspects of our institutional proposal are already being implemented, such as the IPCC assessment of climate engineering technologies in AR5, have the effect that the realization of our proposal does not appear unfeasible, the issue of feasibility is not further explored here. For a detailed exploration of the feasibility of this institutional proposal, see Schäfer (forthcoming).

 

10. We are aware that some commentators consider this to be counterproductive, arguing that the introduction of climate engineering into this existing institutional environment will provide the death blow to international cooperation on climate policy. We do not believe this to be the case for the following two reasons. First, the IPCC is capable of providing highly credible assessments of state of the art research, thus substantially increasing the perceived legitimacy of climate science. Subjecting climate science, and by extension also research on climate engineering to IPCC assessment, can greatly enhance trust in the results of such research and in policy changes and decisions on research project funding that are made on the basis of these results. Second, some critics consider the UNFCCC process too feeble to cope with the potentially conflicting results of introducing climate engineering to the ongoing negotiations. However, we consider the opposite to be at least as likely. Through the introduction of climate engineering into negotiations on climate policy, these discussions could be reinvigorated through the possibility of drawing up a portfolio approach to climate change management that does not rely exclusively on voluntary emission reductions and the transfer of funds for adaptation. Climate engineering could thus depoliticize the current negotiations on climate change management by providing an additional measure that is not (yet) strongly politicized itself.

 

11. For example Barrett (2008); Bodansky (1996); Carlin (2007); House of Commons (2010).

 

12. This would be another environmental assessment agency. Such agencies have increased strongly in number during the past 10–15 years (see Mitchell et al., 2006). Along the same line, Biermann and Siebenhüner (2009, p. 319) point out that international secretariats can act as negotiation facilitators, capacity builders, and knowledge brokers.

 

13. Points of departure for developing such a regulatory code can be found in the ‘Oxford Principles’, in SRMGI (2011), and in Morgan and Ricke (2010).

 

14. While the legitimacy of the IPCC is regularly questioned, this has in the past always led to reform and consequently to increases in the perceived legitimacy of the institution. Current discussions need to be seen in this broader context (Beck, 2010). Victor (2008) argues that the IPCC is not suited for assessing the results of research on climate engineering since it focuses on ‘consensus science’, while the ‘improbable, harmful and unexpected side effects’ are what counts in climate engineering. While Victor’s arguments for an alternative approach to climate engineering research assessment are convincing per se, we argue that the legitimacy gains an IPCC assessment of climate engineering entails and its expected catalytic effects for UNFCCC negotiations weigh up the tradeoffs. Apart from these considerations, it has already been decided that AR5 will prominently address climate engineering research. The IPCC ‘Expert Meeting on Geoengineering’ also suggested drafting a special report on the topic in the near future, very much in line with our suggestions.

 

15. In fact, most of the regulatory proposals in the literature support a solution within the UN system (see e.g. Barrett, 2008; Virgoe, 2009; House of Commons, 2010). Bodansky (1996, pp. 318ff) criticizes the low level of authority of existing institutions and considers the creation of a new institutional setting desirable.

 

16. A similar view is expressed by the The Royal Society (2009): ‘A question for all CDR methods is whether they will be eligible for certification under the KP (or its successor instrument) under the clean development mechanism or joint implementation’.

 

17. National afforestation measures can be offset against emission reduction commitments within the framework of the Kyoto Protocol. Should an international accreditation scheme emerge, this should also apply to afforestation measures being financed in other countries.

 

18. This distinguishes our proposal for a moratorium from Kraemer’s (2010), which suggests a moratorium as a component of a political strategy to prevent climate engineering altogether.

 

 

References

 

Akbari, H., Menon, S. and Rosenfeld, A. (2009) ‘Global Cooling: Increasing World Wide Urban Albedos to Offset CO2’, Climatic Change, 95, pp. 275–286.

 

Barrett, S. (2008) ‘The Incredible Economics of Geoengineering‘, Environmental and Resource Economics, 39, pp. 45–54.

 

Beck, S. (2010) ‘Vertrauen geschmolzen? Zur Glaubwürdigkeit der Klimaforschung’, Aus Politik und Zeitgeschichte, 32–33, pp. 15–21.

 

Beck, U. (2008) World at Risk. Cambridge: Polity Press.

 

Breitmeier, H., Young, O. R. and Zürn, M. (2006) Analyzing International Environmental Regimes: From Case Study to Database. Cambridge, MA: MIT Press.

 

Biermann, F. and Siebenhüner, B. (2009) (eds) Managers of Global Change: The Influence of International Environmental Change. Cambridge, MA: MIT Press.

 

Biermann, F., Pattberg, P. and Zelli, F. (eds) (2010) Global Climate Governance Beyond 2012. Architecture, Agency and Adaptation. Cambridge: Cambridge University Press.

 

Caldeira, K. and Keith, D. (2010) ‘The Need for Geoengineering Research‘, Issues in Science and Technology, Fall 2010, pp. 57–62.

 

Della Porta, D. and Tarrow, S. (eds) (2005) Transnational Protest and Global Activism. Lanham, MD: Rowman & Littlefield Publishers, Inc.

 

ETC Group (2009) ‘Geoengineering’s Governance Vacuum: Unilateralism and the Future of the Planet’, prepared by ETC Group for the US National Academies Workshop Geoengineering Options to Respond to Climate Change: Steps to Establish a Research Agenda, Washington, DC, June 15–16.

 

ETC Group (2010a) Geopiracy: The Case Against Geoengineering, ETC Group Communiqué #103. Available from: http: ⁄ ⁄ www. etcgroup.org [Accessed 4 April 2012].

 

ETC Group (2010b) Geoengineering: Gambling with GAIA, briefing and recommendations for CBD delegates to COP 10. Available from: http: ⁄ ⁄ www.etcgroup.org [Accessed 4 April 2012].

 

Haas, P., Keohane, R. O. and Levy, M. A. (eds) (1993) Institutions for the Earth: Sources of Effective International Environmental Protection. Cambridge, MA: MIT Press.

 

HOME (2011a) What are the aims of Hand Off Mother Earth campaign? Available from: http: ⁄ ⁄ www.handsoffmotherearth.org [Accessed 4 April 2012].

 

HOME (2011b) What is Geoengineering? Available from: http: ⁄ ⁄ www.handsoffmotherearth.org [Accessed 4 April 2012].

 

HOME (2011c) Organisations. Available from http: ⁄ ⁄ www.handsoffmotherearth.org [Accessed 4 April 2012].

 

HOME (2011d) Biochar. Available from http: ⁄ ⁄ www.handsoffmother earth.org [Accessed 4 April 2012].

 

Horton, J. B. (2011) ‘Geoengineering and the Myth of Unilateralism: Pressures and Prospects for International Cooperation‘, Stanford Journal of Law, Science, and Policy. May Issue, pp. 56–69.

 

House of Commons (2010) The Regulation of Geoengineering. London: The Stationery Office Limited.

 

IPCC (2012) ‘Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Geoengineering’, in O. Edenhofer, R. Pichs-Madruga, Y. Sokona, C. Field, V. Barros and T.F. Stockeret al. (eds). Potsdam: IPCC Working Group III Technical Support Unit, Potsdam Institute for Climate Impact Research.

 

Keck, M. and Sikkink, K. (1998) Activists Beyond Borders: Advocacy Networks in International Politics. Ithaca, NY: Cornell University Press.

 

Keith, D. W. (2000) ‘Geoengineering the Climate: History and Prospect’, Annual Review of Energy and the Environment, 25, pp. 245–284.

 

Keith, D. W. (2010a) ‘Engineering the Planet’, in S. H. Schneider, A. Rosencranz, M. D. Mastrandrea and K. Kuntz-Duriseti (eds) Climate Change Science and Policy. Washington, DC: Island Press, pp. 494–501.

 

Keith, D. W. (2010b) ‘Photophoretic levitation of engineered aerosols for geoengineering’, Proceedings of the National Academy of Sciences, 107 (38), pp. 16428–16431.

 

Keohane, R. O. (1984) After Hegemony: Cooperation and Discord in the World Political Economy. Princeton, NJ: Princeton University Press.

 

Keohane, R. O. and Victor, D. (2011) ‘The Regime Complex for Climate Change’, Perspectives on Politics, 9 (1), pp. 7–23.

 

Koremenos, B., Lipson, C. and Snidal, D. (2001) ‘The Rational Design of International Institutions’, International Organization, 55 (4), pp. 761–799.

 

Kraemer, R. A. (2010) ‘Schöner Leben im Labor? Geoengineering und das Recht, die Welt zu verändern’, Internationale Politik, Januar ⁄ Februar, pp. 70–75.

 

Lane, L. (2010) ‘Plan B: The last best hope for containing climate change’, Milken Institute Review, 12 (3). Available from: http: ⁄ ⁄ www.aei.org [Accessed 4 April 2012].

 

Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., et al. (2008) ‘Tipping Elements in the Earth’s Climate System’, Proceedings of the National Academy of Sciences, 105 (6), pp. 1786–1793.

 

Lenton, T. M. and Vaughan, N. E. (2009) ‘The Radiative Forcing Potential of Different Climate Engineering Options’, Atmospheric Chemistry and Physics, 9, pp. 5539–5561.

 

Miles, E. L., Underdal, A. and Andresen, S. (eds) (2001) Environmental Regime Effectiveness: Confronting Theory with Evidence. Cambridge, MA: MIT Press.

 

Mitchell, R. B., Clark, W. C., Cash, D. W. and Dickson, N. M. (eds) (2006) Global Environmental Assessments: Information and Influence. Cambridge, MA: MIT Press.

 

Morgan, M. G. and Ricke, K. (2010) Cooling the Earth through Solar Radiation Management: The Need for Research and an Approach to its Governance. Available from: http: ⁄ ⁄ www.irgc.com [Accessed 10 August 2012].

 

Oleson, K. W., Bonan, G. B. and Feddema, J. (2010) ‘Effects of white roofs on urban temperature in a global climate model’, Geophysical Research Letters, 37, pp. 1–7.

 

Ornstein, L., Aleinov, I. and Rind, D. (2009) ‘Irrigated afforestation of the Sahara and Australian Outback to end global warming’, Climatic Change, 97, pp. 409–437.

 

Ostrom, E. (1990) Governing the Commons: The Evolution of Institutions for Collective Action. Cambridge: Cambridge University Press.

 

Proelss, A. and Güssow, K. (2011) Relevante Institutionen und Instrumente des internationalen Rechts. Trier: Scoping study commissioned by the German Federal Ministry for Education and Research.

 

Rajagopal, B. (2003) International Law From Below: Development, Social Movements and Third World Resistance. Cambridge: Cambridge University Press.

 

Rayner, S. (2010) ‘The Geoengineering Paradox’, The Geoengineering Quarterly, online newsletter, 20 March.

 

Rickels, W., Klepper, G., Dovern, J., Betz, G., Brachatzek, N., Cacean, S., et al. (2011) Large-Scale Intentional Interventions into the Climate System? Assessing the Climate Engineering Debate. Scoping report commissioned by the German Federal Ministry of Education and Research. Kiel: Kiel Earth Institute.

 

Robock, A. (2008) ‘20 Reasons Why Geoengineering May Be a Bad Idea’, Bulletin of the Atomic Scientists, 64 (2), pp. 14–18, 59.

 

Robock, A., Marquardt, A., Kravitz, B. and Stenchikov, G. (2009) ‘Benefits, Risks and Costs of Stratospheric Geoengineering’, Geophysical Research Letters, 36, pp. 1–9.

 

The Royal Society (2009) Geoengineering the Climate: Science, Governance and Uncertainty. RS Policy document 10 ⁄ 09, London: The Royal Society.

 

Schäfer, S. (forthcoming) ‘The International Politics of Engineering the Climate’, unpublished dissertation manuscript.

 

Schelling, T. C. (1960) The Strategy of Conflict. Cambridge, MA: Harvard University Press. Schelling, T. C. (1996) ‘The Economic Diplomacy of Geoengineering’, Climatic Change, 33, pp. 303–307.

 

SRMGI (2011) Solar Radiation Management: The Governance of Research. Available from: http: ⁄ ⁄ www.srmgi.org [Accessed 10 August 2012].

 

Tarrow, S. (2005) The New Transnational Activism. Cambridge: Cambridge University Press.

 

Victor, D. G. (2008) ‘On the Regulation of Geoengineering’, Oxford Review of Economic Policy, 24, 2, pp. 322–336.

 

Victor, D. G. (2011) Global Warming Gridlock: Creating More Effective Strategies for Protecting the Planet. Cambridge: Cambridge University Press.

 

Virgoe, J. (2009) ‘International Governance of a Possible Geoengineering Intervention to Combat Climate Change’, Climatic Change, 95, pp. 103–119.

 

Wiertz, T. and Reichwein, D. (2010) ‘Climate Engineering zwischen Klimapolitik und Völkerrecht‘, Technikfolgenabschätzung - Theorie und Praxis, 19 (2), pp. 17–25.

 

Young, O. R. (ed.) (1999) The Effectiveness of International Regimes: Causal Connections and Behavioral Mechanisms. Cambridge: MIT Press.

 

Zedalis, R. (2010) ‘National Academy of Sciences’ Idea of Geoengineering’, European Energy and Environmental Law Review, 19 (1), pp. 18–32.

 

Zürn, M. (1992) Interessen und Institutionen in der internationalen Politik: Grundlegung und Anwendung des situationsstrukturellen Ansatzes. Opladen: Leske + Budrich.

 

Zürn, M. (1998) Regieren jenseits des Nationalstaates. Frankfurt am Main: Suhrkamp.

 

Zürn, M., Binder, M. and Ecker-Ehrhardt, M. (2012) ‘International Authority and its Politicization’, International Theory, 4 (1), pp. 69–10.

 

 

Author Information Michael Zürn is director at the WZB (Social Science Research Center Berlin) and Professor of International Relations at the Free University Berlin. Stefan Schäfer is a project scientist at the Institute for Advanced Sustainability Studies (IASS). At the time of writing, he was a PhD student at the Berlin Graduate School for Transnational Studies (BTS).

 

 

Quelle: https://www.wzb.eu/sites/default/files/u13/the_paradox_of_climate_engineering_global_policy.pdf

 

 

Ein künstliches Klima durch SRM Geo-Engineering

 

Sogenannte "Chemtrails" sind SRM Geoengineering-Forschungs-Experimente

 

Illegale Feldversuche der SRM Technik, weltweit.

 

 

Illegale militärische und zivile GE-Forschungen finden in einer rechtlichen Grauzone statt.

 

Feldversuche oder illegale SRM Interventionen wurden nie in nur einem einzigen Land der Welt,  je durch ein Parlament gebracht, deshalb sind sie nicht legalisiert und finden in einer rechtlichen Grauzone der Forschung statt. Regierungen wissen genau, dass sie diese Risiko-Forschung, die absichtliche Veränderung mit dem Wetter nie durch die Parlamente bekommen würden..

Climate-Engineering

HAARP - Die Büchse der Pandora in militärischen Händen

 

 

Illegale zivile und militärische SRM Experimente finden 7 Tage die Woche (nonstop) rund um die Uhr statt. 

 

Auch Nachts - trotz Nacht-

Flugverbot.

 

Geo-Engineering Forschung

 

 

Der Wissenschaftler David Keith, der die Geo-Ingenieure Ken Caldeira und Alan Robock in ihrer Arbeit unterstütztsagte auf einem Geo-Engineering - Seminar am 20. Februar 2010, dass sie beschlossen hätten, ihre stratosphärischen Aerosol-Modelle von Schwefel auf Aluminium umzustellen

 

Niemand auf der ganzen Welt , zumindest keiner der staatlichen Medien berichtete von diesem wichtigen Ereignis.

 

 

 

 

Wissenschaftler planen 10 bis 100 Megatonnen hoch toxischer Materialien wie Aluminium, synthetischen Nanopartikeln jedes Jahr in unserer Atmosphäre auszubringen.

 

Die Mengenangaben von SRM Materialien werden neuerdings fast immer in Teragramm berechnet. 

 

  1 Teragramm  = 1 Megatonne

  1 Megatonne  = 1 Million Tonnen

 

 

SAI = Stratosphärische

Aerosol Injektionen mit toxischen Materialen wie:

 

  • Aluminiumoxide
  • Black Carbon 
  • Zinkoxid 
  • Siliciumkarbit
  • Diamant
  • Bariumtitanat
  • Bariumsalze
  • Strontium
  • Sulfate
  • Schwefelsäure 
  • Schwefelwasserstoff
  • Carbonylsulfid
  • Ruß-Aerosole
  • Schwefeldioxid
  • Dimethylsulfit
  • Titan
  • Lithium
  • Kalkstaub
  • Titandioxid
  • Natriumchlorid
  • Meersalz 
  • Calciumcarbonat
  • Siliciumdioxid
  • Silicium
  • Bismuttriiodid (BiI3
  • Polymere
  • Polymorph von TiO2

 


 

 

 

April 2016 

Aerosol Experiments Using Lithium and Psychoactive Drugs Over Oregon.

 

 

SKYGUARDS: Petition an das Europäische Parlament

 

 

Wir haben keine Zeit zu verlieren!

 

 

 

Klage gegen Geo-Engineering und Klimapolitik 

 

Der Rechtsweg ist vielleicht die einzige Hoffnung, Geo-Engineering-Programme zum Anhalten zu bewegen. Paris und andere Klimaabkommen schaffen Ziele von rechtlich international verbindlichen Vereinbarungen. Wenn sie erfolgreich sind, werden höchstwahrscheinlich SRM-Programme ohne ein ordentliches Gerichtsverfahren legalisiert. Wenn das geschieht, wird das unsere Fähigkeit Geoengineering zu verhindern und jede Form von rechtlichen Maßnahmen zu ergreifen stark behindern.

 

Ziel dieser Phase ist es, Mittel zu beschaffen um eine US- Klage vorzubereiten. Der Hauptanwalt Wille Tierarzt wählt qualifizierte Juristen aus dem ganzen Land aus, um sicher zu stellen, dass wir Top-Talente sichern, die wir für unser langfristiges Ziel einsetzen.

 

 

Die Fakten sind, dass seit einem Jahrzehnt am Himmel illegale Wetter -Änderungs-Programme stattfinden, unter Einsatz des Militärs im Rahmen der NATO, ohne Wissen oder Einwilligung der Bevölkerung..

EU-Konferenz und Petition über Wettermodifizierung und Geoengineering in Verbindung mit HAARP Technologien

 

Die Zeit ist gekommen. Anonymous wird nicht länger zusehen. Am 23. April werden wir weltweit gegen Chemtrails und Geoengineering friedlich demonstrieren.

 

Anonymous gegen Geoengineering 

 

 

Wir waren die allerletzten Zeit Zeugen eines normalen natürlichen blauen Himmels.

 

NIE WIEDER WIRD DER HIMMEL SO BLAU SEIN.

 

 

Heute ist der Himmel nicht mehr blau, sondern eher rot oder grau. 

 

 

Metapedia –

Die alternative Enzyklopädie

 

http://de.metapedia.org/wiki/HAARP

 

http://de.metapedia.org/wiki/Chemtrails

 

 

ALLBUCH -

Die neue Enzyklopädie

 

http://de.allbuch.online/wiki/Chemtrails Chemtrails

http://de.allbuch.online/wiki/GeoEngineering GeoEngineering

http://de.allbuch.online/wiki/HAARP HAARP

 

 

 

 

 

SRM - Geoengineering

Aluminium anstatt Schwefeloxid

 

Im Zuge der American Association for the Advancement of Science (AAAS) Conference 2010, San Diego am 20. Februar 2010, wurde vom kanadischen Geoingenieur David W. Keith (University of Calgary) vorgeschlagen, Aluminium anstatt Schwefeldioxid zu verwenden. Begründet wurde dieser Vorschlag mit 1) einem 4-fach größeren Strahlungsantrieb 2) einem ca. 16-fach geringeren Gerinnungsfaktor. Derselbe Albedoeffekt könnte so mit viel geringeren Mengen Aluminium, anstatt Schwefel, bewerkstelligt werden. [13]

 

Mehr Beweise als dieses Video braucht man wohl nicht. >>> Aerosol-Injektionen

 


Das "Geo-Engineering" Klima-Forschungsprogramm der USA wurde direkt dem Weißen Haus unterstellt,

bzw. dort dem White House Office of Science and Technology Policy (OSTP) zugewiesen. 

 

 

Diese Empfehlung lassen bereits das Konfliktpotential dieser GE-Forschung erahnen.

 

 

 

 

 

In den USA fällt Geo-Engineering unter Sicherheitspolitik und Verteidigungspolitik: 

 

 

Geo-Engineering als Sicherheitspolitische Maßnahme..

 

Ein Bericht der NASA merkt an, eine Katastrophensituation könnte die Entscheidung über SRM maßgeblich erleichtern, dann würden politische und ökonomische Einwände irrelevant sein. Die Abschirmung von Sonnenlicht durch SRM Maßnahmen wäre dann die letzte Möglichkeit, um einen katastrophalen Klimawandel abzuwenden.

 

maßgeblich erleichtern..????

 

Nach einer Katastrophensituation sind diese ohnehin illegalen geheimen militärischen SRM Programme wohl noch leichter durch die Parlamente zu bringen unter dem Vorwand der zivilen GE-Forschung. 

 

 

 


Der US-Geheimdienst CIA finanziert mit 630.000 $ für die Jahre   2013/14 

Geoengineering-Studien. Diese Studie wird u.a. auch von zwei anderen staatlichen Stellen NASA und NOAA finanziert. 

 

WARUM SIND DIESE LINKS DER CIA / NASA / NOAA STUDIE ALLE AUS DEM INTERNET WEG ZENSIERT WORDEN, WENN ES DOCH NICHTS ZU VERBERGEN GIBT...?

 

Um möglichst keine Spuren zu hinterlassen.. sind wirklich restlos alle Links im Netz entfernt worden. 

 

 

 

 

 

Es existieren viele Vorschläge zur technologischen Umsetzung des stratosphärischen Aerosol- Schildes.

 

Ein Patent aus dem Jahr 1991 behandelt das Einbringen von Aerosolen in die Stratosphäre

(Chang 1991).

 

Ein neueres Patent behandelt ein Verfahren, in dem Treibstoffzusätze in Verkehrsflugzeugen zum Ausbringen reflektierender Substanzen genutzt werden sollen (Hucko 2009).

 

 

 

Die von Microsoft finanzierte Firma Intellectual Ventures fördert die Entwick­lung eines „Stratoshield“ genannten Verfahrens, bei dem die Aerosolerzeugung in der Strato­sphäre über einen von einem Ballon getragenen Schlauch vom Erdboden aus bewirkt werden soll.

 

CE-Technologien wirken entweder symptomatisch oder ursächlich

 

Symptomatisch wirkend: 

Modifikation durch SRM-Geoengineering- Aerosole in der Stratosphäre

 

Ursächlich wirkend: 

Reduktion der CO2 Konzentration (CDR) 

 

Effekte verschiedener Wolkentypen

 

Dicke, tief hängende Wolken reflektieren das Sonnenlicht besonders gut und beeinflussen kaum die Energie, die von der Erde als langwellige Infrarotstrahlung abgegeben wird. Hohe Wolken sind dagegen kälter und meist dünner. Sie lassen daher mehr Sonnenlicht durch, dafür speichern sie anteilig mehr von der langwelligen, abgestrahlten Erdenergie. Um die Erde abzukühlen, sind daher tiefe Wolken das Ziel der Geoingenieure.

 

 

Zirruswolken wirken also generell erwärmend (Lee et al. 2009). Werden diese Wolken künstlich aufgelöst oder verändert, so wird sich in der Regel ein kühlender Effekt ergeben.

 

Nach einem Vorschlag von Mitchell et al.  (2009) könnte dies durch ein Einsäen von effizienten Eiskeimen bei der Wolkenbildung geschehen.

 

 

Eiskeime werden nur in sehr geringer Menge benötigt und könnten beispielsweise durch Verkehrs-Flugzeuge an geeigneten Orten ausgebracht werden. Die benötigten Materialmengen liegen dabei im Bereich von einigen kg pro Flug.

 

 

Die RQ-4 Global Hawk fliegt etwa in 20 Kilometer Höhe ohne Pilot.

1 - 1,5  Tonnen Nutzlast.

 

Instead of visualizing a jet full of people, a jet full of poison.

 

 

Das Militär hat bereits mehr Flugzeuge als für dieses Geo-Engineering-Szenario erforderlich wären, hergestellt. Da der Klimawandel eine wichtige Frage der nationalen Sicherheit ist [Schwartz und Randall, 2003], könnte das Militär für die Durchführung dieser Mission mit bestehenden Flugzeugen zu minimalen Zusatzkosten sein.

 

http://climate.envsci.rutgers.edu/pdf/GRLreview2.pdf

 

 

 

Die künstliche Klima-Kontrolle durch GE

 

Dies sind die Ausbringung von Aerosolpartikeln in der Stratosphäre, sowie die Erhöhung der Wolkenhelligkeit in der Troposphäre mithilfe von künstlichen Kondensationskeimen.

 

 

 

Brisanz von Climate Engineering  (DFG)

 

Climate-Engineering wird bei Klimakonferenzen (z.B. auf dem Weltklimagipfel in Doha) zunehmend diskutiert. Da die Maßnahmen für die angestrebten Klimaziele bisher nicht greifen, wird Climate Engineering als alternative Hilfe in Betracht gezogen.

 

 

x

 

Umweltaktivistin und Trägerin des alternativen Nobelpreises Dr. Rosalie Bertell, berichtet in Ihrem Buch »Kriegswaffe Planet Erde« über die Folgewirkungen und Auswirkungen diverser (Kriegs-) Waffen..

 

Bild anklicken
Bild anklicken

 

Dieses Buch ist ein Muss für jeden Bürger auf diesem Planeten.

 

..Indessen gehen die Militärs ja selbst gar nicht davon aus, dass es überhaupt einen Klimawandel gibt, wie wir aus Bertell´s Buch wissen (Hamilton in Bertell 2011).

 

Sondern das, was wir als Klimawandel bezeichnen, sind die Wirkungen der immer mehr zunehmenden

Wetter-Manipulationen

und Eingriffe ins Erdgeschehen mittels Geoengineering, insbesondere durch die HAARP-ähnlichen Anlagen, die es inzwischen in aller Welt gibt..

 

Bild anklicken
Bild anklicken

 

 

Why in the World are they spraying 

 

Durch die bahnbrechenden Filme von Michael J. Murphy "What in the World Are They Spraying?" und "Why in the world are the Spraying?" wurden Millionen Menschen die Zerstörung durch SRM-Geoengineering-Projekte vor Augen geführt. Seitdem bilden sich weltweit Bewegungen gegen dieses Verbrechen.

 

 

Die Facebook Gruppe Global-Skywatch hat weltweit inzwischen schon über 90.000 Mitglieder und es werden immer mehr Menschen, die die Wahrheit erkennen und die "gebetsmühlenartig" verbreiteten Lügengeschichten der Regierung und Behörden in Bezug zur GE-Forschung zu Recht völlig hinterfragen. 

 

Bild anklicken: Untertitel in deutscher Sprache
Bild anklicken: Untertitel in deutscher Sprache

 

 


ALBEDO ENHANCEMENT BY STRATOSPHERIC SULFUR INJECTIONS


http://faculty.washington.edu/stevehar/Geoengineering_packet.pdf

 

SRM Programme - Ausbringung durch Flugzeuge 

 

 

 

Die Frage die bleibt, ist die Antwort auf  Stratosphärische Aerosol- Injektions- Programme und die tägliche Umweltzer-störung auf unserem Planeten“

 

 

 

Die Arbeit von Brovkin et al. (2009) zeigt für ein Emissionsszenario ohne Emissionskontrolle, dass der Einsatz von RM für mehrere 1000 Jahre fortgesetzt werden muss, je nachdem wie vollständig der Treibhausgas-induzierte Strahlungsantrieb kompensiert werden soll.

 

 

 

Falls sich die Befürchtung bewahrheitet, dass eine Unterbrechung von RM-Maßnahmen zu abruptem Klimawandel führt, kann sich durch den CE-Einsatz ein Lock-in-Effekt ergeben. Die hohen gesamtwirtschaftlichen Kosten dieses abrupten Klimawandels würden sozusagen eine Weiterführung der RM-Maßnahmen erzwingen.

 

 

 

 

Ausbringungsmöglichkeiten

 

Neben den Studien von CSEPP (1992) und Robock et al. (2009), ist insbesondere die aktuelle Studie von McClellan et al. (2010) hervorzuheben. Für die Ausbringung mit Flugsystemen wird angenommen, dass das Material mit einer Rate von 0,03 kg/m freigesetzt wird. Es werden Ausbringungshöhen von 13 bis 30 km untersucht.

 

 

 

 

Bestehende kleine Düsenjäger, wie der F-15C Eagle, sind in der Lage in der unteren Stratosphäre in den Tropen zu fliegen, während in der Arktis größere Flugzeuge wie die KC-135 Stratotanker oder KC-10 Extender in der Lage sind, die gewünschten Höhen zu erreichen.

x

 

SRM Protest-Märsche gleichzeitig in circa 150 Städten - weltweit.

 

Geoengineering-Forschung als Plan B für eine weltweit verfehlte Klimapolik. 

 

Bild anklicken:
Bild anklicken:

 

Staaten führen illegale Wetter-Änderungs-Techniken als globales Experiment gegen den Klimawandel durch, geregelt über die UN, ausgeführt durch die NATO, mit militärischen Flugzeugen werden jährlich 10-20 Millionen Tonnen hoch giftiger Substanzen in den Himmel gesprüht..

 

Giftige Substanzen, wie Aluminium, Barium, Strontium, die unsere Böden verseuchen und die auch auf Dauer den ph-Wert des Bodens deutlich verändern würden. Es sind giftige Substanzen, wie Schwefel, welches die Ozonschicht systematisch zerstören würde. 

 

x

 

 

 

Weltweite  Protestmärsche gegen globale Geoengineering Experimente finden am 25. April 2015 in all diesen Städten gleichzeitig statt:

 

 

 

AUSTRALIEN - (Adelaide)

AUSTRALIEN - (Albury-Wodonga)

AUSTRALIEN - (Bendigo)

AUSTRALIEN - (Brisbane)

AUSTRALIEN - (Byron Bay)

AUSTRALIEN - (Cairns)

AUSTRALIEN - (Canberra)

AUSTRALIEN - (Darwin)

AUSTRALIEN - (Gold Coast)

AUSTRALIEN - (Hobart)

AUSTRALIEN - (Melbourne)

AUSTRALIEN - (Newcastle)

AUSTRALIEN - (New South Wales, Byron Bay)

AUSTRALIEN - (Perth)

AUSTRALIEN - (Port Macquarie)

AUSTRALIEN - (South Coast NSW)

AUSTRALIEN - (South East Qeensland)

AUSTRALIEN - (Sunshine Coast)

AUSTRALIEN - (Sydney)

AUSTRALIEN - (Tasmania)

BELGIEN - (Brüssel)

BELGIEN - (Brüssel Group)

BRASILIEN - (Curitiba)

BRASILIEN - (Porto Allegre)

BULGARIEN - (Sofia)

Kanada - Alberta - (Calgary)

Kanada - Alberta - (Edmonton)

Kanada - Alberta - (Fort Saskatchewan)

Kanada - British Columbia - (Vancouver Group)

Kanada - British Columbia - (Victoria)

Kanada - Manitobak - (Winnipeg)

Kanada – Neufundland

Kanada - Ontario - (Barrie)

Kanada - Ontario - (Cambridge)

Kanada - Ontario - (Hamilton)

Kanada - Ontario - (London)

Kanada - Ontario - (Toronto)

Kanada - Ontario  - (Ottawa)

Kanada - Ontario - (Windsor)

Kanada - Québec - (Montreal)

KOLUMBIEN - (Medellin)

ZYPERN

KROATIEN - (Zagreb)

DÄNEMARK - (Aalborg)

DÄNEMARK - (Kopenhagen)

DÄNEMARK - (Odense)

ESTLAND - (Tallinn)

Ägypten (Alexandria)

FINNLAND - (Helsinki)

FRANKREICH - (Paris)

DEUTSCHLAND - (Berlin)

DEUTSCHLAND - (Köln)

DEUTSCHLAND - (Düsseldorf)

DEUTSCHLAND - HESSEN - (Wetzlar)

GRIECHENLAND - (Athens)

GRIECHENLAND - (Attica)

Ungarn (Budapest)

IRLAND - (Cork City)

IRLAND - (Galway)

ITALIEN - (Milano)

Italien - Sardinien - (Cagliari)

MAROKKO - (Rabat)

NIEDERLANDE - (Den Haag)

NIEDERLANDE - (Groningen)

NEUSEELAND - (Auckland)

NEUSEELAND - (Christchurch)

NEUSEELAND - (Hamilton)

NEUSEELAND - (Nelson)

NEUSEELAND - (New Plymouth)

NEUSEELAND - (Takaka)

NEUSEELAND - (Taupo)

NEUSEELAND - (Wellington)

NEUSEELAND - (Whangerei)

NEUSEELAND - WEST COAST - (Greymouth)

NORWEGEN-(Bergen)

NORWEGEN - (Oslo)

PORTUGAL - (Lissabon)

SERBIEN - (Glavni Gradovi)

SERBIEN - (Nis)

SLOWENIEN

SPANIEN - (Barcelona)

SPANIEN - (La Coruna)

SPANIEN - (Ibiza)

SPANIEN - (Murcia)

SPANIEN - (San Juan - Alicante)

SCHWEDEN - (Gothenburg)

SCHWEDEN - (Stockholm)

SCHWEIZ - (Bern)

SCHWEIZ - (Genf)

SCHWEIZ - (Zürich)

UK - ENGLAND - (London)

UK - ISLE OF MAN - (Douglas)

UK - Lancashir - (Burnley)

UK - Scotland - (Glasgow)

UK - Cornwall - (Truro)

USA - Alaska - (Anchorage)

USA - Arizona - (Flagstaff)

USA - Arizona - (Tucson)

USA - Arkansas - (Hot Springs)

USA - Kalifornien - (Hemet)

USA - CALIFORINA - (Los Angeles)

USA - Kalifornien - (Redding)

USA - Kalifornien - (Sacramento)

USA - Kalifornien - (San Diego)

USA - Kalifornien - (Santa Cruz)

USA - Kalifornien - (San Francisco)

USA - Kalifornien - Orange County - (Newport Beach)

USA - Colorado - (Denver)

USA - Connecticut - (New Haven)

USA - Florida - (Boca Raton)

USA - Florida - (Cocoa Beach)

USA - Florida - (Miami)

USA - Florida - (Tampa)

USA - Georgia - (Gainesville)

USA - Illinois - (Chicago)

USA - Hawaii - (Maui)

USA - Iowa - (Davenport)

USA - Kentucky - (Louisville)

USA - LOUISIANA - (New Orleans)

USA - Maine - (Auburn)

USA - Maryland - (Easton)

USA - Massachusetts - (Worcester)

USA - Minnesota - (St. Paul)

USA - Missouri - (St. Louis)

USA - Montana - (Missoula)

USA - NEVADA - (Black Rock City)

USA - NEVADA - (Las Vegas)

USA - NEVADA - (Reno)

USA - New Jersey - (Red Bank)

USA - New Mexico (Northern)

USA - NEW YORK - (Ithaca)

USA - NEW YORK - (Long Island)

USA - NEW YORK - (New York City)

USA - NORTH CAROLINA - (Asheville)

USA - NORTH CAROLINA - (Charlotte)

USA - NORTH CAROLINA - (Greensboro)

USA - Oregon - (Ashland)

USA - Oregon - (Portland)

USA - Pennsylvania - (Harrisburg)

USA - Pennsylvania - (Pittsburgh)

USA - Pennsylvania - (West Chester)

USA - Pennsylvania - (Wilkes - Barre)

USA - SOUTH CAROLINA - (Charleston)

USA - Tennessee - (Memphis)

USA - Texas - (Austin)

USA - Texas - (Dallas / Metroplex)

USA - Texas - (Houston)

USA - Texas - (San Antonio)

USA - Vermont - (Burlington)

USA - Virginia - (Richmond)

USA - Virginia - (Virginia Beach)

USA - WASHINGTON - (Seattle)

USA - Wisconsin - (Milwaukee)

 

Bild anklickem: Holger Strom Webseite
Bild anklickem: Holger Strom Webseite

 

Der Film zeigt eindrucksvolle Beispiele, beginnend beim Einsatz der Atombomben mit ihren schrecklichen Auswirkungen bis hin zu den gesundheitszerstörenden, ja tödlichen Hinterlassenschaften der Atomenergienutzung durch die Energiewirtschaft. Eine besondere Stärke des Films liegt in den Aussagen zahlreicher, unabhängiger Fachleute. Sie erläutern mit ihrem in Jahrzehnten eigener Forschung und Erfahrung gesammelten Wissen Sachverhalte und Zusammenhänge, welche die Befürworter und Nutznießer der Atomtechnologie in Politik, Wirtschaft und Militärwesen gerne im Verborgenen halten wollen.

                                             

Prof. Dr. med. Dr. h. c. Edmund Lengfelder

 

 

Nicht viel anders gehen Politiker/ Abgeordnete des Deutschen Bundestages mit der hoch toxischen riskanten SRM Geoengineering-Forschung um, um diese riskante Forschung durch die Parlamente zu bekommen.

 

Es wird mit gefährlichen Halbwissen und Halbwahrheiten gearbeitet. Sie werden Risiken vertuschen, verdrehen und diese Experimente als das einzig Richtige gegen den drohenden Klimawandel verkaufen. Chemtrails sind Stratosphärische Aerosol Injektionen, die  illegal auf globaler Ebene stattfinden, ohne jeglichen Parlament-Beschluss der beteiligten Regierungen.

 

Geoengineering-Projekte einmal begonnen, sollen für Jahrtausende fortgeführt werden - ohne Unterbrechung (auch bei finanziellen Engpässen oder sonstigen Unruhen) um nicht einen Umkehreffekt  auszulösen.

 

Das erzählt Ihnen die Regierung natürlich nicht, um diese illegale hochgefährliche RM Forschung nur ansatzweise durch die Parlamente zu bringen.

 

Spätestens seit dem Atommüll-Skandal mit dem Forschungs-Projekt ASSE wissen wir Bürger/Innen, wie Politik und Wissenschaft mit Forschungs-Risiken umgehen.. Diese Gefahren und Risiken werden dann den Bürgern einfach verschwiegen. 

 

 


 

 

www.climate-engineering.eu

 

Am 30. September 2012 ist eine neue Internetplattform zu Climate Engineering online gegangen www.climate-engineering.eu  

 

Die Plattform enthält alle neuen Infos -Publikationen, Veranstaltungen etc. zu Climate-Engineering.

 

 

 

 

Gezielte Eingriffe in das Klima?

Eine Bestandsaufnahme der Debatte zu Climate Engineering

Kieler Earth Institute

 

 

Climate Engineering:

Ethische Aspekte

Karlsruher Institut für Technologie

 

 

Climate Engineering:

Chancen und Risiken einer Beeinflussung der Erderwärmung. Naturwissenschaftliche und technische Aspekte

Leibniz-Institut für Troposphärenforschung, Leipzig

 

Climate Engineering:

Wirtschaftliche Aspekte 

Kiel Earth Institute

 

 

Climate Engineering:

Risikowahrnehmung, gesellschaftliche Risikodiskurse und Optionen der Öffentlichkeitsbeteiligung

Dialogik Stuttgart

 

 

Climate Engineering:

Instrumente und Institutionen des internationalen Rechts

Universität Trier

 

 

Climate Engineering:

Internationale Beziehungen und politische Regulierung

Wissenschaftszentrum Berlin für Sozialforschung

 

 

 

Illegale Atmosphären-Experimente finden in Deutschland  seit  2012 „täglich“ am Himmel statt.

 

Chemtrails  -  Verschwörung am Himmel ? Wettermanipulation unter den Augen der Öffentlichkeit

 

Auszug aus dem Buch: 

 

Ich behaupte, dass in etwa 2 bis 3 mal pro Woche, ungefähr ein halbes Dutzend  von frühmorgens bis spätabends in einer Art und Weise Wien überfliegen, die logisch nicht erklärbar ist. Diese Maschinen führen über dem Stadtgebiet manchmal auffällige Steig- und Sinkflüge durch , sie fliegen Bögen und sie drehen abrupt ab. Und sie hinterlassen überall ihre dauerhaft beständigen Kondensstreifen, welche auch ich Chemtrails nenne. Sie verschleiern an manchen Tagen ganz Wien und rundherum am Horizont ist strahlend blauer ...
Hier in diesem Buch  aus dem Jahr 2005 werden die anfänglichen stratosphärischen SRM-Experimente am Himmel beschrieben... inzwischen fliegen die Chemie-Bomber ja 24 h Nonstop, rund um die Uhr.

 

 

 

 

Weather Modification Patente

 

http://weatherpeace.blogspot.de

 

Umfangreiche Liste der Patente

http://www.geoengineeringwatch.org/links-to-geoengineering-patents/

 

 

 

 

 

 

 

 

 

 

Von Pat Mooney - Er ist Gründer und Geschäftsführer der kanadischen Umweltschutzorganisation ETC Group in Ottawa.

 

Im Jahr 1975 tat sich der US-Geheimdienst CIA mit Newsweek zusammen und warnte vor globaler Abkühlung. Im selben Jahr wiesen britische Wissenschaftler die Existenz eines Lochs in der Ozonschicht über der Antarktis nach und die UN-Vollversammlung befasste sich mit identischen Anträgen der Sowjetunion und der USA für ein Verbot von Klimamanipulationen, die militärischen Zwecken dienen. Dreißig Jahre später redeten alle - auch der US-Präsident über globale Erwärmung. 

 

Wissenschaftler warnten, der Temperaturanstieg über dem arktischen Eis  und im sibirischen Permafrost könnte in die Klimakatastrophe führen, und der US-Senat erklärte sich bereit , eine Vorlage zu prüfen, mit der Eingriffe in das Klima erlaubt werden sollten. 

 

Geo-Engineering ist heute Realität. Seit dem Debakel von Kopenhagen bemüht sich die große Politik zusammen mit ein paar Milliardären verstärkt darum, großtechnische Szenarien zu prüfen und die entsprechenden Experimente durchzuführen.

 

Seit Anfang 2009 überbieten sich die Medien mit Geschichten über Geoengineering als "Plan B". Wissenschaftliche Institute und Nobelpreisträger legen Berichte und Anträge vor, um die Politik zur Finanzierung von Feldversuchen zu bewegen. Im britischem Parlament wie im US-Kongress haben die Anhörungen schon begonnen. Anfang 2010 berichteten Journalisten, Bill Gates investiere privat in Geoengineering-Forschung und werde bei Geoengineering-Patenten zur Senkung der Meerestemperatur und zur Steuerung von Hurrikanen sogar als Miterfinder genannt. Unterdesssen hat Sir Richard Branson - Gründer und Besitzer der Fluglinie Virgin Air - verkündet, er habe eine Kommandozentrale für den Klimakrieg eingerichtet und sei für alle klimatechnischen Optionen offen. Zuvor hatte er 25 Millionen Dollar für eine Technik ausgesetzt, mit der sich die Stratosphäre reinigen lässt. 

 

Einige der reichsten Männer der Welt (z.B. Richard Branson und Bill Gates ) und die mächtigsten Konzerne (z.B. Shell , Boeing ) werden immer beteiligt.

 

Geoengineering Karte - ETC Group

 

ETC Group veröffentlicht eine Weltkarte über Geoengineering-Experimente, die groß angelegte Manipulation des Klimas unserer Erde.  Zwar gibt es keine vollständige Aufzeichnung von Wetter und Klima-Projekten in Dutzenden von Ländern, diese Karte ist aber der erste Versuch, um den expandierenden Umfang der Forschungs-Experimente zu dokumentieren. 

 

Fast 300 Geo-Engineering-Projekte / Experimente sind auf der Karte vertreten, die zu den verschiedenen Arten von Klima-Änderungs-Technologien gehören.

Einfach anklicken und vergrößern..
Einfach anklicken und vergrößern..

 

Aus der Sicht der reichen Länder (und ihrer Unternehmen) erscheint Geoengineering einfach perfekt. Es ist machbar. Es ist (relativ) billig. Und es erlaubt der Industrie, den Umbau unserer Wirtschaft und Produktionsweise für überflüssig zu erklären.

 

Das wichtigste aber ist: Geoengineering braucht keinerlei internationale Übereinkunft. Länder, Unternehmen, ja sogar superreiche Geo-Piraten können es auf eigene Faust durchziehen. Eine bescheidene >Koalition der Willigen< genügt vollauf, und eine Handvoll Akteure kann den Planeten nach Belieben umbauen.

 

Damit wir es nicht vergessen:

 

Seit 1945  führten die USA, die UdSSR, England, Frankreich und später auch China mehr als 2000 Atomtests durch – über und unter der Erde und ohne Rücksicht auf die zu erwartenden Auswirkungen auf Gesundheit und Umwelt weltweit. Niemand wurde um Erlaubnis gefragt. Wenn das Weltklima zu kippen droht, werden sie da wirklich vor einseitigen Entscheidungen zurückschrecken? 

 

 

 

Warum ist Geo-Engineering nicht akzeptabel..?

 

SRM Geoengineering kann nicht im Labor getestet werden: Es ist keine experimentelle Labor-Phase möglich, um einen spürbaren Einfluss auf das Klima zu haben. Geo-Engineering muss massiv eingesetzt werden.

 

Experimente oder Feldversuche entsprechen tatsächlich den Einsatz in der realen Welt, da kleine Tests nicht die Daten auf Klimaeffekte liefern.

 

Auswirkungen für die Menschen und die biologische Vielfalt würden wahrscheinlich sofort massiv und möglicherweise irreversibel sein.

 

 

 

 

Hände weg von Mutter Erde (HOME) ist eine weltweite Kampagne, um unserem kostbaren Planeten Erde, gegen die Bedrohung durch Geo-Engineering-Experimente zu verteidigen. Gehen Sie mit uns, um eine klare Botschaft an die Geo-Ingenieure und die Regierungen weltweit zu senden, dass unsere Erde kein ein Labor ist.

 

x

Liste der (SRM) Geoengineering-Forschung

Hier anklicken:
Hier anklicken:

http://www.ww.w.givewell.org/files/shallow/geoengineering/Geoengineering research funding 10-9-13.xls

 

Weltweite Liste der Geoengineering-Forschung SRM Forschungs Länder: 

 

Großbritannien, Vereinigte Staaten Amerika, Deutschland, Frankreich, Norwegen, Finnland, Österreich und Japan.

 

 

In "NEXT BANG!" beschreibt Pat Money neue Risikotechnologien, die heute von Wissenschaftlern, Politikern und mächtigen Finanziers aktiv für den kommerziellen Einsatz vorbereitet werden:

 

Geo-Engineering, Nanotechnologie, oder die künstliche >Verbesserung< des menschlichen Körpers.

 

"Die  Brisanz des Buches liegt darin, dass es zeigt, wie die Technologien, die unsere Zukunft bestimmen könnten, heute zum großflächigen Einsatz vorbereitet werden – und das weitgehend unbemerkt von der Öffentlichkeit. Atomkraft, toxische Chemikalien oder genmanipulierte Organismen konnten deshalb nicht durch demokratische Entscheidungen verhindert werden, weil hinter ihnen bereits eine zu große ökonomische und politische Macht stand, als ihre Risiken vielen Menschen erst bewusst wurden.

 

Deshalb dürfen wir die Diskussion über Geoengineering, Nanotechnologie, synthetische Biologie  und die anderen neuen Risikotechnologien nicht länger den selbsternannten Experten überlassen. Die Entscheidungen über ihren künftigen Einsatz fallen jetzt - es ist eine Frage der Demokratie, dass wir alle dabei mitreden."

 

Ole von UexküllDirektor der Right Livelihood Award Foundation, die den Alternativen Nobelpreis vergibt

 

 

Vanishing of the Bees - No Bees, No Food !

 

Verschwinden der Bienen  - Keine Bienen, kein Essen !

 

http://www.beeheroic.com/geoengineering-and-environment

http://www.beeheroic.com/resources

 

 

 

 

 

Solar Radiation Management = SRM

Es ist zu beachten, dass SRM Maßnahmen zwar auf kurzer Zeitskala wirksam werden können, die Dauer ihres Einsatzes aber an der Lebensdauer des CO-2 gebunden ist, welches mehrere Tausend Jahre beträgt.

 

CDR- Maßnahmen hingegen müssten über einen sehr langen Zeitraum (viele Jahrzehnte) aufgebaut werden, ihr Einsatz könnte allerdings beendet werden, sobald die CO2 Konzentration wieder auf ein akzeptables Niveau gesenkt ist. Entsprechende Anstrengungen vorausgesetzt, könnte dies bereits nach einigen Hundert Jahren erreicht sein.

 

CDR Maßnahmen: sind relativ teuer und arbeiten viel zu langsam. Bis sie wirken würden, vergehen viele Jahrzehnte

 

Solar Radiation Management SRM Maßnahmen: billig.. und schnell..

 

 

Quelle: Institut für Technikfolgenabschätzung

 

 

 

 

 

Solar Radiation Management = SRM

 

Ironie der Geoengineering Forschung:

 

Ein früherer SRM Abbruch hätte einen abrupten sehr heftigen Klimawandel zur Folge, den wir in dieser Schnelligkeit und heftigen Form nie ohne diese SRM Maßnahmen gehabt hätten. 

 

Das, was Regierungen mit den globalen GEO-ENGINEERING-INTERVENTIONEN verhindern wollten, genau das wären dann die globalen Folgeschäden bei der frühzeitigen Beendigung der SRM Forschungs-Interventionen.

 

Wenn sie diese hoch giftigen SAI - Programme  aus wichtigen Gründen vorher abbrechen müssten, droht uns ein abrupter Klimawandel, der ohne diese GE-Programme nie dagewesen wäre. 

 

Das bezeichne ich doch mal  als wahre  reale Satire..