Improved aerosol radiative properties as a foundation for solar geoengineering risk assessment

 

J. A. Dykema 1 , D. W. Keith 1,2, and F. N. Keutsch 1,3

 

1 John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA, 2 John F. Kennedy School of Government, Harvard University, Cambridge, Massachusetts, USA, 3 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA

 

 

Abstract

 

Side effects resulting from the deliberate injection of sulfate aerosols intended to partially offset climate change have motivated the investigation of alternatives, including solid aerosol materials. Sulfate aerosols warm the tropical tropopause layer, increasing the flux of water vapor into the stratosphere, accelerating ozone loss, and increasing radiative forcing. The high refractive index of some solid materials may lead to reduction in these risks. We present a new analysis of the scattering efficiency and absorption of a range of candidate solid aerosols. We utilize a comprehensive radiative transfer model driven by updated, physically consistent estimates of optical properties. We compute the potential increase in stratospheric water vapor and associated longwave radiative forcing. We find that the stratospheric heating calculated in this analysis indicates some materials to be substantially riskier than previous work. We also find that there are Earth-abundant materials that may reduce some principal known risks relative to sulfate aerosols.

 

1. Introduction 1.1. Background Deliberate injection of aerosols into the stratosphere, usually referred to as solar radiation management (SRM), seeks to partially compensate for the climate impacts caused by longwave (thermal infrared) radiative forcing due to anthropogenic carbon dioxide and other greenhouse gases by producing a counteracting shortwave (solar) radiative forcing. Current scientific understanding for such an intervention [Robock et al., 2013] stems in part from the natural analogue provided by short-term temperature fluctuations associated with volcanic eruptions. Such eruptions can increase the optical depth of sulfate aerosols in the stratosphere, as in the case of the Mount Pinatubo eruption [McCormick et al., 1995]. Determining the efficacy of a given particle type for SRM and evaluating some of the risks of SRM rest on accurate knowledge of scattering properties. One important risk of SRM derives from the chemistry of stratospheric aerosols, particularly the potential for ozone erosion through heterogeneous chemistry [Heckendorn et al., 2009; Pitari et al., 2014; Tilmes et al., 2008; Weisenstein et al., 2015]. Other major risks that have been identified include stratospheric heating and its consequences, including coupling to surface wind stress with possible consequences for ocean currents and West Antarctic Ice Sheet stability [Aquila et al., 2014; Ferraro et al., 2015; McCusker et al., 2015], hydrological perturbations [Bala et al., 2008; Kleidon et al., 2015; Niemeier et al., 2013], and increased diffuse shortwave radiation [Kravitz et al., 2012a]. Both risk and efficacy may in principle be manipulated through choice of material used as aerosol. There are many additional risks, including, among others, political risks and national and international legal issues, surveyed in several reports [National Research Council, 2015; Schäfer et al., 2015; Shepherd, 2009] and actively being investigated by social scientists.

 

In this work, we will treat shortwave and longwave radiative forcing (RF) [Myhre et al., 2013] separately, because they are associated with different physical processes within the solid aerosols we examine and because changes in shortwave and longwave radiation present different environmental risks. The shortwave RF at the top of the atmosphere (TOA) is a measure of how much solar radiation is reflected back to space due to the addition of aerosols. The goal of SRM is generally taken to be an idealized alteration of shortwave RF which is frequently represented in models as a change in the solar constant and understood conceptually as a planetary albedo change. For this reason, we focus on the TOA RF, although RF at the tropopause is generally taken to be more indicative of the potential climate impact of an RF agent. High refractive index solid aerosols offer the possibility of achieving comparable shortwave radiative forcing to sulfate aerosols with fewer disadvantages, including significantly reduced total aerosol mass, less diffuse downwelling radiation,

 

 

and less potential for ozone loss through heterogeneous chemistry. Based on their relative abundance, high refractive index, and potential for reduced chemical risk relative to sulfate, we evaluate specific forms of silicon carbide [Laor and Draine, 1993] (SiC), synthetic diamond [Edwards and Philipp, 1985] (cubic carbon), aluminum oxide [Tropf and Thomas, 1998] (Al2O3), titanium dioxide [Hosaka et al., 1997; Jellison et al., 2003; Ribarsky and Palik, 1985; Schöche et al., 2013] (TiO2), zirconium dioxide [Nicoloso et al., 1992; Pecharroman et al., 1996] (ZrO2), calcium carbonate [Ghosh, 1999; Long et al., 1993] (CaCO3), and a baseline of idealized sulfate aerosols [Biermann et al., 2000; Hummel et al., 1988; Lund Myhre et al., 2003; Palmer and Williams, 1975]. Relevant physical and optical properties for these materials are shown in Table 1 and Figure 1.

 

1.2. Comparison With Previous Work In this study, we present a framework to allow a meaningful comparison of known environmental consequences as a function of material properties. While use of solid aerosols for SRM has been the subject of at least eight prior studies [Blackstock et al., 2009; Ferraro et al., 2015, 2011; Jones et al., 2016; Keith, 2010; Pope et al., 2012; Teller et al., 1997; Weisenstein et al., 2015], the treatment of the radiative properties has been inconsistent. Several early papers did not perform radiative transfer calculations [Blackstock et al., 2009; Keith, 2010; Teller et al., 1997]. One important study computed albedo increases for a wide range of possible solid aerosol materials [Pope et al., 2012] but did not compute stratospheric heating or infrared radiative forcing. Other studies have looked at stratospheric heating [Ferraro et al., 2015, 2011] but only for black carbon and one polymorph of TiO2. Different crystal polymorphs can have substantial differences in physical properties, including density, scattering, and absorption.

 

How do variations in these physical properties translate into quantitative differences in estimates of environmental impacts, such as stratospheric heating and hydrological perturbations? As is the case with radiative properties, the treatment of the side effects or environmental impacts of solid aerosols has been similarly uneven. The radiative perturbations caused by stratospheric aerosols interact with coupled radiative, chemical, and dynamical processes in the atmosphere in a spatially inhomogeneous and potentially nonlinear way. An absolute quantitative assessment of impacts due to SRM therefore requires computationally expensive simulations with coupled chemistry-climate models and is inherently model dependent. Some studies have ignored impacts entirely [Blackstock et al., 2009; Keith, 2010; Teller et al., 1997]. Others have investigated the potential for chemical perturbations [Pope et al., 2012; Weisenstein et al., 2015]. A few have looked at changes in circulation [Ferraro et al., 2015, 2011] and stratospheric composition [Pope et al., 2012]. Changes in stratospheric composition may be particularly important. Multiple models of sulfate aerosol SRM [Pitari et al., 2014] have confirmed the potential for increased flux of water vapor into the stratosphere due to tropopause heating and computed the resulting positive tropopause-level longwave RF due to water vapor’s longwave opacity. Stratospheric water vapor is an important greenhouse gas and has been the subject of recent debate as a possible source of decadal-scale climate variability [Gilford et al., 2015; Hegglin et al., 2014].

 

We weave together these two threads. We use more comprehensive optical properties and detailed representations of aerosol scattering to systematically compute shortwave and longwave RF and radiative heating rates. And we apply these radiative quantities to specific risks of SRM including (a) tropopause temperature increases leading to increased water vapor fluxes into the stratosphere, (b) differential impacts of changes in longwave and shortwave RF on the surface energy budget, and (c) changes in direct versus diffuse shortwave flux at the surface. For solid aerosols we explicitly calculate—for the first time—possible increases in longwave RF due to stratospheric water vapor driven by lower stratospheric heating. We find that in some cases, our approach leads to more pessimistic conclusions about their risks as SRM materials.

 

 

2. Methods

 

Radiative transfer calculations are performed in this study using the Rapid Radiative Transfer Model (RRTM), which utilizes the correlated-k method for molecular absorption [Clough et al., 2005; Mlawer et al., 1997] and the Discrete Ordinates Radiative Transfer (DISORT) [Stamnes et al., 1988] code to compute multiple scattering from molecules and condensate. RRTM separately computes shortwave and longwave radiative fluxes, spanning 820–50,000 cm1 in 14 bands and 10–3250 cm1 in 16 bands, respectively. The diurnal cycle in the shortwave radiative calculations is accounted for varying the solar zenith angle consistent with time and location (Text S1 in the supporting information), and 16 streams (angular distribution functions) are employed for the shortwave computations to ensure accurate representation of scattering anisotropy. Clouds are parameterized independently for the shortwave and longwave (Text S2).

 

Mie theory is utilized to compute scattering properties for spherical particles [Bohren and Huffman, 2008] based on complex index of refraction data. This computation results in values for aerosol optical depth, single scattering albedo, and scattering phase, the parameters necessary to perform the aerosol scattering and absorption calculations within RRTM. We assume an idealized uniform aerosol layer of monodisperse, monomer particles with perfectly defined sharp upper and lower edges, confined between 18 and 23 km (Text S3). Uniform layers have been considered previously [Ferraro et al., 2011; Pope et al., 2012] and offer a useful approximation to compare radiative properties exclusive of microphysical and transport processes. Real layers may of course either sink toward the poles [Weisenstein et al., 2015] or expand in depth in the case of particles capable of self-lofting [Kravitz et al., 2012b].

 

The increase in diffuse solar radiation at the surface is computed from the daily average of increases in diffuse downwelling radiation after introduction of the aerosol layer. We compute instantaneous shortwave and longwave RF from the difference in net flux for the model atmosphere before and after introduction of the solid aerosol layer. This initial longwave value represents RF before the temperature is allowed to equilibrate to maintain radiative dynamical balance. We determine the equilibrium temperature profile by application of the fixed dynamical heating adjustment [Fels et al., 1980; Ramanathan and Dickinson, 1979]. We then compute adjusted RF using this equilibrium temperature profile.

 

We compute comparative estimates of the potential risks associated with each aerosol type studied using an approach similar to a previous assessment [Kirk-Davidoff et al., 1999] of the link between climate change and the potential for further stratospheric ozone erosion. Kirk-Davidoff et al. [1999] evaluated the change in ozone with respect to surface temperature as a product of partial derivatives. Our method is shown in detail in Figure S3. We calculate the mixing ratio of water vapor entering the stratosphere from the radiatively induced temperature increase at the tropical tropopause by applying a value of 0.8 ppmv H2O K1 derived from previous work [Heckendorn et al., 2009; Kirk-Davidoff et al., 1999]. We then assume that transport processes homogenize the increase in entering water vapor mixing ratio throughout the stratosphere, a simplification subject to certain limitations (see Text S4). The longwave tropopause-level RF is then calculated from the change in net longwave flux after the temperature profile equilibrates to the new water vapor profile through another application of the fixed dynamical heating adjustment.

 

 

3. Data

 

Complex refractive index data spanning 10–50,000 cm1 or wavelengths of 0.200 μm to 1000 μm (Table 1) are required for these radiative calculations. Although the optical properties of the materials considered here have been studied across this range of the electromagnetic spectrum, direct measurements of the imaginary (absorptive) part of the refractive index are not uniformly available. We use physically based approximations to calculate the imaginary refractive index when necessary. We extend the red (long wavelength) edge of the electronic absorption feature using the Urbach tail model [Tang et al., 1995; Urbach, 1953]; and we extend the blue (short wavelength) edge of the (longwave) absorption, due to crystalline phonon modes, with an ensemble of harmonic oscillators, including anharmonic corrections [Gervais and Piriou, 1974] where necessary. Similar approaches have been used to good effect for computing refractive index values across the electromagnetic spectrum for astronomical applications [Laor and Draine, 1993; Pégourié, 1988]. We account for birefringence by averaging over the different principal axes refractive indices, which is approximate [Stout et al., 2007] but likely a small correction relative to uncertainty from crystal defects and impurities.

 

We compute a background atmospheric column specification for the radiative transfer calculation from reanalysis, using monthly average, all-sky zonal profiles of temperature, humidity, clouds, and ozone on pressure surfaces and surface shortwave albedo (Text S5) and longwave emissivity, from the Modern Era Retrospective Reanalysis (MERRA) [Rienecker et al., 2011]. We obtain the mixing ratio of carbon dioxide and other greenhouse gases from the RCP 6.0 scenario for the year 2040 [Hijioka et al., 2008].

 

 

4. Results

 

4.1. Calculating Radiative Quantities: Forcing and Temperature Changes

 

To identify the optimum radius for monodisperse particles for a fixed total mass of aerosol, we perform radiative transfer calculations with a benchmark specification of atmospheric conditions: annual-average, zonally averaged data for 15°S to 15°N with equinox solar illumination and fixed emissivity. We estimate the influence of different locations, different seasons, and clouds and vary surface characteristics using monthly average zonal data (Text S5). From these benchmark calculations, we obtain maximum TOA shortwave RF as a function of particle radius as shown in Figure S1. Based on this optimum radius, the total mass of monodisperse aerosol required to achieve an arbitrary benchmark of 1Wm2 shortwave RF can be calculated (Table 1). We choose a monodisperse size distribution for the following reasons. The radiative properties of aerosol layers are a sensitive function of particle size distributions. Coalescence is a primary determinant of size distributions; injection rates and locations, however, also have significant influence. Recent work on aluminum oxide [Weisenstein et al., 2015] finds that for suitable choices of injection location, on a globally averaged basis, 71% of particles remain as monomers and 18% remain as dimers for 1 Tg/yr of particles with radii of 160 nm. Based on these results, monodisperse distributions provide a physically plausible representation that allows direct comparisons of radiative impacts, separate from microphysical concerns. Other studies [Ferraro et al., 2015, 2011; Pope et al., 2012] utilized wide lognormal size distributions, but a relatively small deviation from optimal size (before any formation of aggregates that may occur) is presumably technologically achievable for solids. Mass-produced particles would of course not be perfectly monodisperse, but scalable processes can produce high yields with a narrow distribution [Pal et al., 2007; Yanagishita et al., 2004]. We note, however, that Weisenstein et al. [2015] find that the fraction of particles remaining as monodisperse depends on injection rate, so that higher aerosol burdens will result in more multicore aggregates.

 

The range of optimal radii for monodisperse spheres varies from 130 nm up to 215 nm for the materials used in this work and increases with decreasing real refractive index. The physical processes controlling the absorption (the imaginary refractive index k) vary across the shortwave and longwave spectral regions relevant to the climate system’s energy balance. Electronic processes dominate the shortwave part of the spectrum; lattice vibrations dominate the longwave portion. At the boundary between these spectral regions governed by these processes, the materials considered here are nearly transparent, with trace absorption dominated by crystal defects and impurities [Tropf et al., 1995]. Measurements of k in the transparent range are challenging because reflected radiation intensity can be multiple orders of magnitude stronger than absorption. For this reason, spectroradiometric methods often lack the required sensitivity, but laser calorimetry can be employed [Hass et al., 1975].

 

Although this absorption may be small, it is not without significance. We utilize empirical formulations for the refractive index to approximate the imaginary refractive index in the transparent region. In the case of the rutile crystal polymorph of TiO2, estimating the imaginary refractive index k in the transparent region gives a result of about 2 × 10-3 at 600 nm. Our value leads to a mean stratospheric heating of 1.7 K versus 1.2 K when assuming that k is identically zero between 440 nm and 11,000 nm, as per a well-established reference [Ribarsky and Palik, 1985]. Without knowing crystal defects and impurity composition, it is impossible to apply exact computational methods from materials physics to quantify the accuracy of these approximations. For the purposes of this work, the radiative transfer results are computed and compared for a plausible representation of the absorption in spectral regions where crystal absorption measurements are not available

 

In addition to the scattering efficiency, the shortwave RF also depends on the absorption, quantified by the aerosol single scattering albedo. For this reason, despite its high index, rutile achieves a lower TOA shortwave RF per unit mass than the anatase TiO2 polymorph (Table 1), due to the relative red shifting of rutile’s electronic bandgap. Electronic absorption from rutile and anatase is responsible for, respectively, a loss—relative to an idealized aerosol with the same real refractive index but zero absorption—in TOA shortwave RF of 0.11 and 0.04 W m2 for our benchmark 1Wm2 case. The combination of high refractive index and minimal ultraviolet and visible absorption [Choyke and Patrick, 1968] allows α-SiC to achieve the greatest RF for a fixed total aerosol mass. The cubic β-SiC polymorph would be less mass efficient due to its lower electronic bandgap [Casady and Johnson, 1996] and higher shortwave absorption [Choyke and Patrick, 1969].

 

Stratospheric temperature change due to aerosol absorption (shown in Figure 2) depends on both the shortwave and longwave optical properties of materials (Figure S2). In equilibrium the increase in emission of infrared radiation by the stratosphere due to increasing temperature must balance the thermal input from absorption. Diamond and alumina have the smallest stratospheric heating. Diamond, a covalent crystal with no dipole moment, absorbs longwave radiation minimally [Zaitsev, 2013]. Alumina has a prominent longwave absorption band near 15 μm which would be expected to produce signifi- cant local heating but for the fortuitous overlap of this absorption with the strong atmospheric absorption by the Q-branch of the carbon dioxide bending vibration, lowering flux of upwelling radiation in this band. Infrared absorption is strong for sulfate aerosols relative to all solid materials because of the continuum absorption associated with their liquid phase.

 

 

4.2. The Impacts of Radiative Perturbations Due To Stratospheric Aerosols

 

Stratospheric temperature increases due to absorption by introduction of an aerosol layer have multiple consequences. In the tropics, rising tropopause temperatures can increase the amount of water vapor that enters the stratospheric overworld [Dessler et al., 2013; Heckendorn et al., 2009; KirkDavidoff et al., 1999; Sherwood and Dessler, 2000]. Models indicate that ozone loss increases when heterogeneous chemistry occurring on solid surfaces accelerates with increasing water vapor mixing ratio. Water vapor is a greenhouse gas, and stratospheric water vapor has a much lower opacity than stratospheric carbon dioxide [Clough et al., 1992]. Because of this relative transparency and because the lower stratosphere is so cold relative to the average radiation temperature of the atmosphere, even small increases in the stratospheric water vapor content can produce a significant longwave RF at the tropopause. This additional RF (shown in Figure 3) is an important consideration for assessing the efficacy of an aerosol material for SRM.

 

Stratospheric water vapor responds to changes in tropical convection, upwelling [Garcia and Randel, 2008], and ice lofting [Dessler et al., 2016]. To allow comparison of potential impacts of increased stratospheric water vapor due to increased tropical tropopause temperature, we adopt a simplified approach that allows a model-independent and self-consistent estimation of lower stratospheric temperature increase and the associated increase in water vapor entering the lower stratosphere via the tropical tropopause. This approach necessarily excludes a detailed calculation of the response of the various processes that determine the structure of the tropical tropopause layer to a changing climate. The sensitivity and sign of these processes in response to changes in RF are in disagreement in current climate models [Pitari et al., 2014], but recent work suggests that their contributions are additive [Wang et al., 2015]. The additional longwave RF from stratospheric water vapor in the case of rutile and sulfate aerosols amounts to 0.18 and 0.24 W m2 , respectively, reducing their efficacies for SRM by about 20%.

 

Shortwave RF at different levels (shown in Figure 3) depends on both absorption and scattering. In terms of risks, shortwave absorption is doubly problematic because it both causes stratospheric heating and an imbalanced perturbation of the surface energy budget relative to carbon dioxide, the risks of which are explained below. The troposphere is relatively transparent to shortwave radiation, so this reduction reaches the surface largely intact. In contrast, changes to surface longwave radiation due to longwave absorption are damped by the longwave opacity of the troposphere. Shortwave absorption therefore creates a more substantial perturbation to the surface radiative budget, relative to an equivalent stratospheric temperature change due to absorbed longwave flux alone. Chemical and dynamical changes in response to stratospheric temperature changes are relatively insensitive to causation. On the other hand, precipitation will be much more strongly perturbed by shortwave absorption than by longwave absorption, because precipitation responds strongly to changes in the surface radiation budget [Bala et al., 2008]. Increases in diffuse radiation arising from injected stratospheric aerosol affect the biosphere [Mercado et al., 2009] and photochemistry among other potentially significant impacts [Kravitz et al., 2012a].

 

Beyond altering stratospheric temperature and humidity, which perturbs chemical reaction rates, the chemical properties of the aerosols may also directly alter stratospheric composition. The physical surface of added aerosols becomes a substrate for the deposition of ambient sulfuric acid, spreading the sulfuric acid over a larger surface area [Weisenstein et al., 2015] with the potential for the activation of halogen compounds [Anderson et al., 2012; Solomon, 1999] and the loss of ozone. Furthermore, the bare solid aerosol surface itself can facilitate the catalytic activation of inorganic chlorine, as in the case of Al2O3 [Molina et al., 1997], and shortwave absorption may enable photocatalytic reactions [Fujishima et al., 2008].

 

 

5. Conclusions

 

The absolute magnitude of each radiative perturbation we calculate in Figure 3 requires consideration of coupled radiative, dynamical, and chemical processes between components of the climate system represented explicitly by coupled chemistry-climate models. Our calculations provide an approximate but physically realistic guide to relative impacts when comparing different scattering aerosols. These relative quantities emphasize that minimizing total aerosol mass is not a sufficient condition for minimizing risk. The detailed consideration of radiative transfer presented here suggests that some prominent side effects may be reduced. Diamond, α-Al2O3, and α-SiC are Earth-abundant materials that scatter solar radiation with greater mass efficiency and less stratospheric heating relative to sulfate. The atmospheric heating produced by TiO2 is large and uncertain, being highly dependent on crystal polymorph and the unmeasured spectral region of its solar absorption cross section.

 

Examination of the leading sources of uncertainties in the findings of this study identifies other questions requiring further research. A major consideration is how well idealized representations of spherical particles and their fractal aggregates, modeled with optical properties taken from studies of large single crystals or thin films, quantify efficacy and risks. Furthermore, ageing could cause substantial changes in optical properties or chemical reactivity over the expected aerosol lifetime of 1 to 2 years. As noted previously in the text, the absorption in the transition region between electronic and lattice influence has not in general been measured adequately. A program of laboratory investigations would quantitatively address this shortcoming. These laboratory studies would help to constrain the performance of practical materials, which will contain impurities, defects, and other imperfections that shape their optical properties. The feasibility of any of these materials is subject to new categories of uncertainties relative to sulfate because they do not naturally occur in the stratosphere. Furthermore, the acute and chronic ecological and human health implications for aerosol materials deposited at the surface must be studied in detail as a necessary component of risk assessment.

 

 

 

 

NEED FOR ACCURATE AEROSOL PROPERTIES FOR SRM

 

 

References

 

Anderson, J. G., D. M. Wilmouth, J. B. Smith, and D. S. Sayres (2012), UV dosage levels in summer: Increased risk of ozone loss from convectively injected water vapor, Science, 337(6096), 835–839.

 

Aquila, V., C. Garfinkel, P. Newman, L. Oman, and D. Waugh (2014), Modifications of the quasi-biennial oscillation by a geoengineering perturbation of the stratospheric aerosol layer, Geophys. Res. Lett., 41, 1738–1744, doi:10.1002/2013GL058818.

 

Bala, G., P. Duffy, and K. Taylor (2008), Impact of geoengineering schemes on the global hydrological cycle, Proc. Natl. Acad. Sci. U.S.A., 105(22), 7664–7669.

 

Biermann, U., B. Luo, and T. Peter (2000), Absorption spectra and optical constants of binary and ternary solutions of H2SO4, HNO3, and H2O in the mid infrared at atmospheric temperatures, J. Phys. Chem. A, 104(4), 783–793.

 

Blackstock, J., D. Battisti, and K. Caldeira (2009), Climate engineering responses to climate emergencies Novim initial study on geoengineering (Novim Study Group 01, 2009) Rep. Bohren, C. F., and D. R. Huffman (2008), Absorption and Scattering of Light by Small Particles, John Wiley, New York. Casady, J., and R. W. Johnson (1996), Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review, Solid-State Electron., 39(10), 1409–1422.

 

Choyke, W., and L. Patrick (1968), Higher absorption edges in 6 H SiC, Phys. Rev., 172(3), 769–772.

 

Choyke, W., and L. Patrick (1969), Higher absorption edges in cubic SiC, Phys. Rev., 187(3), 1041–1043.

 

Clough, S. A., M. J. Iacono, and J. L. Moncet (1992), Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor, J. Geophys. Res., 97(D14), 15,761–15,785, doi:10.1029/92JD01419.

 

Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown (2005), Atmospheric radiative transfer modeling: A summary of the AER codes, J. Quant. Spectrosc. Radiat. Transfer, 91(2), 233–244.

 

Dessler, A., M. Schoeberl, T. Wang, S. Davis, and K. Rosenlof (2013), Stratospheric water vapor feedback, Proc. Natl. Acad. Sci. U.S.A., 110(45), 18,087–18,091.

 

Dessler, A., H. Ye, T. Wang, M. Schoeberl, L. Oman, A. Douglass, A. Butler, K. Rosenlof, S. Davis, and R. Portmann (2016), Transport of ice into the stratosphere and the humidification of the stratosphere over the 21st century, Geophys. Res. Lett., 43, 2323–2329, doi:10.1002/ 2016GL067991.

 

Edwards, D. F., and H. Philipp (1985), Cubic carbon (diamond), in Handbook of Optical Constants of Solids, vol. 1, edited by E. D. Palik, pp. 665–673, Academic Press, Orlando.

 

Fels, S., J. Mahlman, M. Schwarzkopf, and R. Sinclair (1980), Stratospheric sensitivity to perturbations in ozone and carbon dioxide: Radiative and dynamical response, J. Atmos. Sci., 37(10), 2265–2297.

 

Ferraro, A. J., A. J. Charlton-Perez, and E. J. Highwood (2015), Stratospheric dynamics and midlatitude jets under geoengineering with space mirrors and sulfate and titania aerosols, J. Geophys. Res. Atmos., 120, 414–429, doi:10.1002/2014JD022734.

 

Ferraro, A. J., E. J. Highwood, and A. J. Charlton-Perez (2011), Stratospheric heating by potential geoengineering aerosols, Geophys. Res. Lett., 38, L24706, doi:10.1029/2011GL049761.

 

Fujishima, A., X. Zhang, and D. A. Tryk (2008), TiO 2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 63(12), 515–582.

 

Garcia, R. R., and W. J. Randel (2008), Acceleration of the Brewer-Dobson circulation due to increases in greenhouse gases, J. Atmos. Sci., 65(8), 2731–2739.

 

Gervais, F., and B. Piriou (1974), Temperature dependence of transverse-and longitudinal-optic modes in Ti O 2 (rutile), Phys. Rev. B, 10(4), 1642–1654.

 

Ghosh, G. (1999), Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals, Opt. Commun., 163(1), 95–102.

 

Gilford, D. M., S. Solomon, and R. W. Portmann (2015), Radiative impacts of the 2011 abrupt drops in water vapor and ozone in the tropical tropopause layer, J. Clim., 29(2), 595–612.

 

Hass, M., J. W. Davisson, H. B. Rosenstock, and J. Babiskin (1975), Measurement of very low absorption coefficients by laser calorimetry, Appl. Opt., 14(5), 1128–1130.

 

Heckendorn, P., D. Weisenstein, S. Fueglistaler, B. P. Luo, E. Rozanov, M. Schraner, L. W. Thomason, and T. Peter (2009), The impact of geoengineering aerosols on stratospheric temperature and ozone, Environ. Res. Lett., 4(4) 045108, doi:10.1088/1748-9326/4/4/045108.

 

Hegglin, M., D. Plummer, T. Shepherd, J. Scinocca, J. Anderson, L. Froidevaux, B. Funke, D. Hurst, A. Rozanov, and J. Urban (2014), Vertical structure of stratospheric water vapour trends derived from merged satellite data, Nat. Geosci., 7(10), 768–776.

 

Hijioka, Y., Y. Matsuoka, H. Nishimoto, T. Masui, and M. Kainuma (2008), Global GHG emission scenarios under GHG concentration stabilization targets, J. Global Environ. Eng., 13, 97–108.

 

Hosaka, N., T. Sekiya, C. Satoko, and S. Kurita (1997), Optical properties of single-crystal anatase TiO 2, J. Phys. Soc. Jpn., 66(3), 877–880.

 

Hummel, J. R., E. P. Shettle, and D. R. Longtin (1988), A new background stratospheric aerosol model for use in atmospheric radiation modelsRep DTIC Document.

 

Jellison, G., Jr., L. Boatner, J. Budai, B.-S. Jeong, and D. Norton (2003), Spectroscopic ellipsometry of thin film and bulk anatase (TiO2), J. Appl. Phys., 93(12), 9537–9541.

 

Jones, A. C., J. M. Haywood, and A. Jones (2016), Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection, Atmos. Chem. Phys., 16(5), 2843–2862.

 

Keith, D. W. (2010), Photophoretic levitation of engineered aerosols for geoengineering, Proc. Natl. Acad. Sci. U.S.A., 107(38), 16,428–16,431.

 

Kirk-Davidoff, D. B., E. J. Hintsa, J. G. Anderson, and D. W. Keith (1999), The effect of climate change on ozone depletion through changes in stratospheric water vapour, Nature, 402(6760), 399–401.

 

Kleidon, A., B. Kravitz, and M. Renner (2015), The hydrological sensitivity to global warming and solar geoengineering derived from thermodynamic constraints, Geophys. Res. Lett., 42, 138–144, doi:10.1002/2014GL062589.

 

Kravitz, B., D. G. MacMartin, and K. Caldeira (2012a), Geoengineering: Whiter skies?, Geophys. Res. Lett., 39, L11801, doi:10.1029/ 2012GL051652.

 

Kravitz, B., A. Robock, D. T. Shindell, and M. A. Miller (2012b), Sensitivity of stratospheric geoengineering with black carbon to aerosol size and altitude of injection, J. Geophys. Res., 117, D09203, doi:10.1029/2011JD017341.

 

Laor, A., and B. T. Draine (1993), Spectroscopic constraints on the properties of dust in active galactic nuclei, Astrophys. J., 402, 441–468.

 

Long, L., M. Querry, R. Bell, and R. Alexander (1993), Optical properties of calcite and gypsum in crystalline and powdered form in the infrared and far-infrared, Infrared Phys., 34(2), 191–201.

 

Lund Myhre, C. E., D. H. Christensen, F. M. Nicolaisen, and C. J. Nielsen (2003), Spectroscopic study of aqueous H2SO4 at different temperatures and compositions: Variations in dissociation and optical properties, J. Phys. Chem. A, 107(12), 1979–1991.

 

McCormick, M. P., L. W. Thomason, and C. R. Trepte (1995), Atmospheric effects of the Mt Pinatubo eruption, Nature, 373(6513), 399–404. McCusker, K., D. Battisti, and C. Bitz (2015), Inability of stratospheric sulfate aerosol injections to preserve the West Antarctic Ice Sheet, Geophys. Res. Lett., 42, 4989–4997, doi:10.1002/2015GL064314.

 

Mercado, L. M., N. Bellouin, S. Sitch, O. Boucher, C. Huntingford, M. Wild, and P. M. Cox (2009), Impact of changes in diffuse radiation on the global land carbon sink, Nature, 458(7241), 1014–1017.

 

Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough (1997), Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102(D14), 16,663–16,682, doi:10.1029/97JD00237.

 

Molina, M. J., L. T. Molina, R. Zhang, R. F. Meads, and D. D. Spencer (1997), The reaction of ClONO2 with HCl on aluminum oxide, Geophys. Res. Lett., 24(13), 1619–1622, doi:10.1029/97GL01560.

 

Myhre, G., et al. (2013), Anthropogenic and natural radiative forcing, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker, pp. 659–740, Cambridge Univ. Press, Cambridge, U. K., and New York.

 

National Research Council (2015), Climate Intervention: Reflecting Sunlight to Cool Earth, pp. 244,

 

National Academies Press, Washington, D. C. Nicoloso, N., A. Löbert, and B. Leibold (1992), Optical absorption studies of tetragonal and cubic thin-film yttria-stabilized zirconia, Sens. Actuators B., 8(3), 253–256.

 

Niemeier, U., H. Schmidt, K. Alterskjær, and J. Kristjánsson (2013), Solar irradiance reduction via climate engineering: Impact of different techniques on the energy balance and the hydrological cycle, J. Geophys. Res. Atmos., 118, 11,905–11,917, doi:10.1002/2013JD020445.

 

Pal, M., J. Garcia Serrano, P. Santiago, and U. Pal (2007), Size-controlled synthesis of spherical TiO2 nanoparticles: Morphology, crystallization, and phase transition, J. Phys. Chem. C, 111(1), 96–102.

 

Palmer, K. F., and D. Williams (1975), Optical constants of sulfuric acid; application to the clouds of Venus?, Appl. Opt., 14(1), 208–219.

 

Pecharroman, C., M. Ocana, and C. Serna (1996), Optical constants of tetragonal and cubic zirconias in the infrared, J. Appl. Phys., 80(6), 3479–3483.

 

Pégourié, B. (1988), Optical properties of alpha silicon carbide, Astron. Astrophys., 194, 335–339.

 

Pitari, G., V. Aquila, B. Kravitz, A. Robock, S. Watanabe, I. Cionni, N. D. Luca, G. D. Genova, E. Mancini, and S. Tilmes (2014), Stratospheric ozone response to sulfate geoengineering: Results from the Geoengineering Model Intercomparison Project (GeoMIP), J. Geophys. Res. Atmos., 119, 2629–2653, doi:10.1002/2013JD020566.

 

Pope, F., P. Braesicke, R. Grainger, M. Kalberer, I. Watson, P. Davidson, and R. Cox (2012), Stratospheric aerosol particles and solar-radiation management, Nat. Clim. Change, 2(10), 713–719.

 

Ramanathan, V., and R. E. Dickinson (1979), The role of stratospheric ozone in the zonal and seasonal radiative energy balance of the Earth-troposphere system, J. Atmos. Sci., 36(6), 1084–1104.

 

Ribarsky, M., and E. Palik (1985), Handbook of Optical Constants of Solids, Titanium Dioxide (TiO2)(Rutile), pp. 795–804, Academic Press, San Diego, Calif.

 

Rienecker, M. M., M. J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M. G. Bosilovich, S. D. Schubert, L. Takacs, and G.-K. Kim (2011), MERRA: NASA’s modern-era retrospective analysis for research and applications, J. Clim., 24(14), 3624–3648.

 

Robock, A., D. G. MacMartin, R. Duren, and M. W. Christensen (2013), Studying geoengineering with natural and anthropogenic analogs, Clim. Change, 121(3), 445–458.

 

Schäfer, S., et al. (2015), The European Transdisciplinary Assessment of Climate Engineering (EuTRACE): Removing greenhouse gases from the atmosphere and reflecting sunlight away from earth, Funded by the European Union’s Seventh Framework Programme under Grant Agreement, 306993.

 

Schöche, S., T. Hofmann, R. Korlacki, T. Tiwald, and M. Schubert (2013), Infrared dielectric anisotropy and phonon modes of rutile TiO2, J. Appl. Phys., 113(16, 164102).

 

Shepherd, J. G. (2009), Geoengineering the Climate: Science, Governance and Uncertainty, Royal Society, London.

 

Sherwood, S. C., and A. E. Dessler (2000), On the control of stratospheric humidity, Geophys. Res. Lett., 27(16), 2513–2516, doi:10.1029/ 2000GL011438.

 

Solomon, S. (1999), Stratospheric ozone depletion: A review of concepts and history, Rev. Geophys., 37(3), 275–316, doi:10.1029/ 1999RG900008.

 

Stamnes, K., S.-C. Tsay, W. Wiscombe, and K. Jayaweera (1988), Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 27(12), 2502–2509.

 

Stout, B., M. Nevière, and E. Popov (2007), T matrix of the homogeneous anisotropic sphere: Applications to orientation-averaged resonant scattering, J. Opt. Soc. Am. A, 24(4), 1120–1130.

 

Tang, H., F. Levy, H. Berger, and P. Schmid (1995), Urbach tail of anatase TiO 2, Phys. Rev. B, 52(11), 7771.

 

Teller, E., L. Wood, and R. Hyde (1997), Global warming and ice ages: I. Prospects for physics-based modulation of global changeRep, Lawrence Livermore Natl Laboratory, Livermore, Calif.

 

Tilmes, S., R. Müller, and R. Salawitch (2008), The sensitivity of polar ozone depletion to proposed geoengineering schemes, Science, 320(5880), 1201–1204.

 

Tropf, W. J., and M. E. Thomas (1998), Aluminum oxide (Al2O3) revisited, in Handbook of Optical Constants of Solids, vol. 3, pp. 653–677, Academic Press, New York.

 

Tropf, W. J., M. E. Thomas, and T. J. Harris (1995), Properties of crystals and glasses, in Handbook of Optics, vol. 2, pp. 33.61, McGraw-Hill, New York.

 

Urbach, F. (1953), The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids, Phys. Rev., 92(5, 1324).

 

Wang, W., K. Matthes, and T. Schmidt (2015), Quantifying contributions to the recent temperature variability in the tropical tropopause layer, Atmos. Chem. Phys., 15(10), 5815–5826.

 

Weisenstein, D. K., D. W. Keith, and J. Dykema (2015), Solar geoengineering using solid aerosol in the stratosphere, Atmos. Chem. Phys., 15(20), 11,835–11,859.

 

Yanagishita, T., Y. Tomabechi, K. Nishio, and H. Masuda (2004), Preparation of monodisperse SiO2 nanoparticles by membrane emulsification using ideally ordered anodic porous alumina, Langmuir, 20(3), 554–555.

 

Zaitsev, A. M. (2013), Optical Properties of Diamond: A Data Handbook, Springer Science & Business Media, Berlin.

 

 

Quelle: http://onlinelibrary.wiley.com/doi/10.1002/2016GL069258/pdf

Ein künstliches Klima durch SRM Geo-Engineering

 

Sogenannte "Chemtrails" sind SRM Geoengineering-Forschungs-Experimente

 

Illegale Feldversuche der SRM Technik, weltweit.

 

 

Illegale militärische und zivile GE-Forschungen finden in einer rechtlichen Grauzone statt.

 

Feldversuche oder illegale SRM Interventionen wurden nie in nur einem einzigen Land der Welt,  je durch ein Parlament gebracht, deshalb sind sie nicht legalisiert und finden in einer rechtlichen Grauzone der Forschung statt. Regierungen wissen genau, dass sie diese Risiko-Forschung, die absichtliche Veränderung mit dem Wetter nie durch die Parlamente bekommen würden..

Climate-Engineering

HAARP - Die Büchse der Pandora in militärischen Händen

 

 

Illegale zivile und militärische SRM Experimente finden 7 Tage die Woche (nonstop) rund um die Uhr statt. 

 

Auch Nachts - trotz Nacht-

Flugverbot.

 

Geo-Engineering Forschung

 

 

Der Wissenschaftler David Keith, der die Geo-Ingenieure Ken Caldeira und Alan Robock in ihrer Arbeit unterstütztsagte auf einem Geo-Engineering - Seminar am 20. Februar 2010, dass sie beschlossen hätten, ihre stratosphärischen Aerosol-Modelle von Schwefel auf Aluminium umzustellen

 

Niemand auf der ganzen Welt , zumindest keiner der staatlichen Medien berichtete von diesem wichtigen Ereignis.

 

 

 

 

Wissenschaftler planen 10 bis 100 Megatonnen hoch toxischer Materialien wie Aluminium, synthetischen Nanopartikeln jedes Jahr in unserer Atmosphäre auszubringen.

 

Die Mengenangaben von SRM Materialien werden neuerdings fast immer in Teragramm berechnet. 

 

  1 Teragramm  = 1 Megatonne

  1 Megatonne  = 1 Million Tonnen

 

 

SAI = Stratosphärische

Aerosol Injektionen mit toxischen Materialen wie:

 

  • Aluminiumoxide
  • Black Carbon 
  • Zinkoxid 
  • Siliciumkarbit
  • Diamant
  • Bariumtitanat
  • Bariumsalze
  • Strontium
  • Sulfate
  • Schwefelsäure 
  • Schwefelwasserstoff
  • Carbonylsulfid
  • Ruß-Aerosole
  • Schwefeldioxid
  • Dimethylsulfit
  • Titan
  • Lithium
  • Kalkstaub
  • Titandioxid
  • Natriumchlorid
  • Meersalz 
  • Calciumcarbonat
  • Siliciumdioxid
  • Silicium
  • Bismuttriiodid (BiI3
  • Polymere
  • Polymorph von TiO2

 


 

 

 

April 2016 

Aerosol Experiments Using Lithium and Psychoactive Drugs Over Oregon.

 

 

SKYGUARDS: Petition an das Europäische Parlament

 

 

Wir haben keine Zeit zu verlieren!

 

 

 

Klage gegen Geo-Engineering und Klimapolitik 

 

Der Rechtsweg ist vielleicht die einzige Hoffnung, Geo-Engineering-Programme zum Anhalten zu bewegen. Paris und andere Klimaabkommen schaffen Ziele von rechtlich international verbindlichen Vereinbarungen. Wenn sie erfolgreich sind, werden höchstwahrscheinlich SRM-Programme ohne ein ordentliches Gerichtsverfahren legalisiert. Wenn das geschieht, wird das unsere Fähigkeit Geoengineering zu verhindern und jede Form von rechtlichen Maßnahmen zu ergreifen stark behindern.

 

Ziel dieser Phase ist es, Mittel zu beschaffen um eine US- Klage vorzubereiten. Der Hauptanwalt Wille Tierarzt wählt qualifizierte Juristen aus dem ganzen Land aus, um sicher zu stellen, dass wir Top-Talente sichern, die wir für unser langfristiges Ziel einsetzen.

 

 

Die Fakten sind, dass seit einem Jahrzehnt am Himmel illegale Wetter -Änderungs-Programme stattfinden, unter Einsatz des Militärs im Rahmen der NATO, ohne Wissen oder Einwilligung der Bevölkerung..

EU-Konferenz und Petition über Wettermodifizierung und Geoengineering in Verbindung mit HAARP Technologien

 

Die Zeit ist gekommen. Anonymous wird nicht länger zusehen. Am 23. April werden wir weltweit gegen Chemtrails und Geoengineering friedlich demonstrieren.

 

Anonymous gegen Geoengineering 

 

 

Wir waren die allerletzten Zeit Zeugen eines normalen natürlichen blauen Himmels.

 

NIE WIEDER WIRD DER HIMMEL SO BLAU SEIN.

 

 

Heute ist der Himmel nicht mehr blau, sondern eher rot oder grau. 

 

 

Metapedia –

Die alternative Enzyklopädie

 

http://de.metapedia.org/wiki/HAARP

 

http://de.metapedia.org/wiki/Chemtrails

 

 

ALLBUCH -

Die neue Enzyklopädie

 

http://de.allbuch.online/wiki/Chemtrails Chemtrails

http://de.allbuch.online/wiki/GeoEngineering GeoEngineering

http://de.allbuch.online/wiki/HAARP HAARP

 

 

 

 

 

SRM - Geoengineering

Aluminium anstatt Schwefeloxid

 

Im Zuge der American Association for the Advancement of Science (AAAS) Conference 2010, San Diego am 20. Februar 2010, wurde vom kanadischen Geoingenieur David W. Keith (University of Calgary) vorgeschlagen, Aluminium anstatt Schwefeldioxid zu verwenden. Begründet wurde dieser Vorschlag mit 1) einem 4-fach größeren Strahlungsantrieb 2) einem ca. 16-fach geringeren Gerinnungsfaktor. Derselbe Albedoeffekt könnte so mit viel geringeren Mengen Aluminium, anstatt Schwefel, bewerkstelligt werden. [13]

 

Mehr Beweise als dieses Video braucht man wohl nicht. >>> Aerosol-Injektionen

 


Das "Geo-Engineering" Klima-Forschungsprogramm der USA wurde direkt dem Weißen Haus unterstellt,

bzw. dort dem White House Office of Science and Technology Policy (OSTP) zugewiesen. 

 

 

Diese Empfehlung lassen bereits das Konfliktpotential dieser GE-Forschung erahnen.

 

 

 

 

 

In den USA fällt Geo-Engineering unter Sicherheitspolitik und Verteidigungspolitik: 

 

 

Geo-Engineering als Sicherheitspolitische Maßnahme..

 

Ein Bericht der NASA merkt an, eine Katastrophensituation könnte die Entscheidung über SRM maßgeblich erleichtern, dann würden politische und ökonomische Einwände irrelevant sein. Die Abschirmung von Sonnenlicht durch SRM Maßnahmen wäre dann die letzte Möglichkeit, um einen katastrophalen Klimawandel abzuwenden.

 

maßgeblich erleichtern..????

 

Nach einer Katastrophensituation sind diese ohnehin illegalen geheimen militärischen SRM Programme wohl noch leichter durch die Parlamente zu bringen unter dem Vorwand der zivilen GE-Forschung. 

 

 

 


Der US-Geheimdienst CIA finanziert mit 630.000 $ für die Jahre   2013/14 

Geoengineering-Studien. Diese Studie wird u.a. auch von zwei anderen staatlichen Stellen NASA und NOAA finanziert. 

 

WARUM SIND DIESE LINKS DER CIA / NASA / NOAA STUDIE ALLE AUS DEM INTERNET WEG ZENSIERT WORDEN, WENN ES DOCH NICHTS ZU VERBERGEN GIBT...?

 

Um möglichst keine Spuren zu hinterlassen.. sind wirklich restlos alle Links im Netz entfernt worden. 

 

 

 

 

 

Es existieren viele Vorschläge zur technologischen Umsetzung des stratosphärischen Aerosol- Schildes.

 

Ein Patent aus dem Jahr 1991 behandelt das Einbringen von Aerosolen in die Stratosphäre

(Chang 1991).

 

Ein neueres Patent behandelt ein Verfahren, in dem Treibstoffzusätze in Verkehrsflugzeugen zum Ausbringen reflektierender Substanzen genutzt werden sollen (Hucko 2009).

 

 

 

Die von Microsoft finanzierte Firma Intellectual Ventures fördert die Entwick­lung eines „Stratoshield“ genannten Verfahrens, bei dem die Aerosolerzeugung in der Strato­sphäre über einen von einem Ballon getragenen Schlauch vom Erdboden aus bewirkt werden soll.

 

CE-Technologien wirken entweder symptomatisch oder ursächlich

 

Symptomatisch wirkend: 

Modifikation durch SRM-Geoengineering- Aerosole in der Stratosphäre

 

Ursächlich wirkend: 

Reduktion der CO2 Konzentration (CDR) 

 

Effekte verschiedener Wolkentypen

 

Dicke, tief hängende Wolken reflektieren das Sonnenlicht besonders gut und beeinflussen kaum die Energie, die von der Erde als langwellige Infrarotstrahlung abgegeben wird. Hohe Wolken sind dagegen kälter und meist dünner. Sie lassen daher mehr Sonnenlicht durch, dafür speichern sie anteilig mehr von der langwelligen, abgestrahlten Erdenergie. Um die Erde abzukühlen, sind daher tiefe Wolken das Ziel der Geoingenieure.

 

 

Zirruswolken wirken also generell erwärmend (Lee et al. 2009). Werden diese Wolken künstlich aufgelöst oder verändert, so wird sich in der Regel ein kühlender Effekt ergeben.

 

Nach einem Vorschlag von Mitchell et al.  (2009) könnte dies durch ein Einsäen von effizienten Eiskeimen bei der Wolkenbildung geschehen.

 

 

Eiskeime werden nur in sehr geringer Menge benötigt und könnten beispielsweise durch Verkehrs-Flugzeuge an geeigneten Orten ausgebracht werden. Die benötigten Materialmengen liegen dabei im Bereich von einigen kg pro Flug.

 

 

Die RQ-4 Global Hawk fliegt etwa in 20 Kilometer Höhe ohne Pilot.

1 - 1,5  Tonnen Nutzlast.

 

Instead of visualizing a jet full of people, a jet full of poison.

 

 

Das Militär hat bereits mehr Flugzeuge als für dieses Geo-Engineering-Szenario erforderlich wären, hergestellt. Da der Klimawandel eine wichtige Frage der nationalen Sicherheit ist [Schwartz und Randall, 2003], könnte das Militär für die Durchführung dieser Mission mit bestehenden Flugzeugen zu minimalen Zusatzkosten sein.

 

http://climate.envsci.rutgers.edu/pdf/GRLreview2.pdf

 

 

 

Die künstliche Klima-Kontrolle durch GE

 

Dies sind die Ausbringung von Aerosolpartikeln in der Stratosphäre, sowie die Erhöhung der Wolkenhelligkeit in der Troposphäre mithilfe von künstlichen Kondensationskeimen.

 

 

 

Brisanz von Climate Engineering  (DFG)

 

Climate-Engineering wird bei Klimakonferenzen (z.B. auf dem Weltklimagipfel in Doha) zunehmend diskutiert. Da die Maßnahmen für die angestrebten Klimaziele bisher nicht greifen, wird Climate Engineering als alternative Hilfe in Betracht gezogen.

 

 

x

 

Umweltaktivistin und Trägerin des alternativen Nobelpreises Dr. Rosalie Bertell, berichtet in Ihrem Buch »Kriegswaffe Planet Erde« über die Folgewirkungen und Auswirkungen diverser (Kriegs-) Waffen..

 

Bild anklicken
Bild anklicken

 

Dieses Buch ist ein Muss für jeden Bürger auf diesem Planeten.

 

..Indessen gehen die Militärs ja selbst gar nicht davon aus, dass es überhaupt einen Klimawandel gibt, wie wir aus Bertell´s Buch wissen (Hamilton in Bertell 2011).

 

Sondern das, was wir als Klimawandel bezeichnen, sind die Wirkungen der immer mehr zunehmenden

Wetter-Manipulationen

und Eingriffe ins Erdgeschehen mittels Geoengineering, insbesondere durch die HAARP-ähnlichen Anlagen, die es inzwischen in aller Welt gibt..

 

Bild anklicken
Bild anklicken

 

 

Why in the World are they spraying 

 

Durch die bahnbrechenden Filme von Michael J. Murphy "What in the World Are They Spraying?" und "Why in the world are the Spraying?" wurden Millionen Menschen die Zerstörung durch SRM-Geoengineering-Projekte vor Augen geführt. Seitdem bilden sich weltweit Bewegungen gegen dieses Verbrechen.

 

 

Die Facebook Gruppe Global-Skywatch hat weltweit inzwischen schon über 90.000 Mitglieder und es werden immer mehr Menschen, die die Wahrheit erkennen und die "gebetsmühlenartig" verbreiteten Lügengeschichten der Regierung und Behörden in Bezug zur GE-Forschung zu Recht völlig hinterfragen. 

 

Bild anklicken: Untertitel in deutscher Sprache
Bild anklicken: Untertitel in deutscher Sprache

 

 


ALBEDO ENHANCEMENT BY STRATOSPHERIC SULFUR INJECTIONS


http://faculty.washington.edu/stevehar/Geoengineering_packet.pdf

 

SRM Programme - Ausbringung durch Flugzeuge 

 

 

 

Die Frage die bleibt, ist die Antwort auf  Stratosphärische Aerosol- Injektions- Programme und die tägliche Umweltzer-störung auf unserem Planeten“

 

 

 

Die Arbeit von Brovkin et al. (2009) zeigt für ein Emissionsszenario ohne Emissionskontrolle, dass der Einsatz von RM für mehrere 1000 Jahre fortgesetzt werden muss, je nachdem wie vollständig der Treibhausgas-induzierte Strahlungsantrieb kompensiert werden soll.

 

 

 

Falls sich die Befürchtung bewahrheitet, dass eine Unterbrechung von RM-Maßnahmen zu abruptem Klimawandel führt, kann sich durch den CE-Einsatz ein Lock-in-Effekt ergeben. Die hohen gesamtwirtschaftlichen Kosten dieses abrupten Klimawandels würden sozusagen eine Weiterführung der RM-Maßnahmen erzwingen.

 

 

 

 

Ausbringungsmöglichkeiten

 

Neben den Studien von CSEPP (1992) und Robock et al. (2009), ist insbesondere die aktuelle Studie von McClellan et al. (2010) hervorzuheben. Für die Ausbringung mit Flugsystemen wird angenommen, dass das Material mit einer Rate von 0,03 kg/m freigesetzt wird. Es werden Ausbringungshöhen von 13 bis 30 km untersucht.

 

 

 

 

Bestehende kleine Düsenjäger, wie der F-15C Eagle, sind in der Lage in der unteren Stratosphäre in den Tropen zu fliegen, während in der Arktis größere Flugzeuge wie die KC-135 Stratotanker oder KC-10 Extender in der Lage sind, die gewünschten Höhen zu erreichen.

x

 

SRM Protest-Märsche gleichzeitig in circa 150 Städten - weltweit.

 

Geoengineering-Forschung als Plan B für eine weltweit verfehlte Klimapolik. 

 

Bild anklicken:
Bild anklicken:

 

Staaten führen illegale Wetter-Änderungs-Techniken als globales Experiment gegen den Klimawandel durch, geregelt über die UN, ausgeführt durch die NATO, mit militärischen Flugzeugen werden jährlich 10-20 Millionen Tonnen hoch giftiger Substanzen in den Himmel gesprüht..

 

Giftige Substanzen, wie Aluminium, Barium, Strontium, die unsere Böden verseuchen und die auch auf Dauer den ph-Wert des Bodens deutlich verändern würden. Es sind giftige Substanzen, wie Schwefel, welches die Ozonschicht systematisch zerstören würde. 

 

x

 

 

 

Weltweite  Protestmärsche gegen globale Geoengineering Experimente finden am 25. April 2015 in all diesen Städten gleichzeitig statt:

 

 

 

AUSTRALIEN - (Adelaide)

AUSTRALIEN - (Albury-Wodonga)

AUSTRALIEN - (Bendigo)

AUSTRALIEN - (Brisbane)

AUSTRALIEN - (Byron Bay)

AUSTRALIEN - (Cairns)

AUSTRALIEN - (Canberra)

AUSTRALIEN - (Darwin)

AUSTRALIEN - (Gold Coast)

AUSTRALIEN - (Hobart)

AUSTRALIEN - (Melbourne)

AUSTRALIEN - (Newcastle)

AUSTRALIEN - (New South Wales, Byron Bay)

AUSTRALIEN - (Perth)

AUSTRALIEN - (Port Macquarie)

AUSTRALIEN - (South Coast NSW)

AUSTRALIEN - (South East Qeensland)

AUSTRALIEN - (Sunshine Coast)

AUSTRALIEN - (Sydney)

AUSTRALIEN - (Tasmania)

BELGIEN - (Brüssel)

BELGIEN - (Brüssel Group)

BRASILIEN - (Curitiba)

BRASILIEN - (Porto Allegre)

BULGARIEN - (Sofia)

Kanada - Alberta - (Calgary)

Kanada - Alberta - (Edmonton)

Kanada - Alberta - (Fort Saskatchewan)

Kanada - British Columbia - (Vancouver Group)

Kanada - British Columbia - (Victoria)

Kanada - Manitobak - (Winnipeg)

Kanada – Neufundland

Kanada - Ontario - (Barrie)

Kanada - Ontario - (Cambridge)

Kanada - Ontario - (Hamilton)

Kanada - Ontario - (London)

Kanada - Ontario - (Toronto)

Kanada - Ontario  - (Ottawa)

Kanada - Ontario - (Windsor)

Kanada - Québec - (Montreal)

KOLUMBIEN - (Medellin)

ZYPERN

KROATIEN - (Zagreb)

DÄNEMARK - (Aalborg)

DÄNEMARK - (Kopenhagen)

DÄNEMARK - (Odense)

ESTLAND - (Tallinn)

Ägypten (Alexandria)

FINNLAND - (Helsinki)

FRANKREICH - (Paris)

DEUTSCHLAND - (Berlin)

DEUTSCHLAND - (Köln)

DEUTSCHLAND - (Düsseldorf)

DEUTSCHLAND - HESSEN - (Wetzlar)

GRIECHENLAND - (Athens)

GRIECHENLAND - (Attica)

Ungarn (Budapest)

IRLAND - (Cork City)

IRLAND - (Galway)

ITALIEN - (Milano)

Italien - Sardinien - (Cagliari)

MAROKKO - (Rabat)

NIEDERLANDE - (Den Haag)

NIEDERLANDE - (Groningen)

NEUSEELAND - (Auckland)

NEUSEELAND - (Christchurch)

NEUSEELAND - (Hamilton)

NEUSEELAND - (Nelson)

NEUSEELAND - (New Plymouth)

NEUSEELAND - (Takaka)

NEUSEELAND - (Taupo)

NEUSEELAND - (Wellington)

NEUSEELAND - (Whangerei)

NEUSEELAND - WEST COAST - (Greymouth)

NORWEGEN-(Bergen)

NORWEGEN - (Oslo)

PORTUGAL - (Lissabon)

SERBIEN - (Glavni Gradovi)

SERBIEN - (Nis)

SLOWENIEN

SPANIEN - (Barcelona)

SPANIEN - (La Coruna)

SPANIEN - (Ibiza)

SPANIEN - (Murcia)

SPANIEN - (San Juan - Alicante)

SCHWEDEN - (Gothenburg)

SCHWEDEN - (Stockholm)

SCHWEIZ - (Bern)

SCHWEIZ - (Genf)

SCHWEIZ - (Zürich)

UK - ENGLAND - (London)

UK - ISLE OF MAN - (Douglas)

UK - Lancashir - (Burnley)

UK - Scotland - (Glasgow)

UK - Cornwall - (Truro)

USA - Alaska - (Anchorage)

USA - Arizona - (Flagstaff)

USA - Arizona - (Tucson)

USA - Arkansas - (Hot Springs)

USA - Kalifornien - (Hemet)

USA - CALIFORINA - (Los Angeles)

USA - Kalifornien - (Redding)

USA - Kalifornien - (Sacramento)

USA - Kalifornien - (San Diego)

USA - Kalifornien - (Santa Cruz)

USA - Kalifornien - (San Francisco)

USA - Kalifornien - Orange County - (Newport Beach)

USA - Colorado - (Denver)

USA - Connecticut - (New Haven)

USA - Florida - (Boca Raton)

USA - Florida - (Cocoa Beach)

USA - Florida - (Miami)

USA - Florida - (Tampa)

USA - Georgia - (Gainesville)

USA - Illinois - (Chicago)

USA - Hawaii - (Maui)

USA - Iowa - (Davenport)

USA - Kentucky - (Louisville)

USA - LOUISIANA - (New Orleans)

USA - Maine - (Auburn)

USA - Maryland - (Easton)

USA - Massachusetts - (Worcester)

USA - Minnesota - (St. Paul)

USA - Missouri - (St. Louis)

USA - Montana - (Missoula)

USA - NEVADA - (Black Rock City)

USA - NEVADA - (Las Vegas)

USA - NEVADA - (Reno)

USA - New Jersey - (Red Bank)

USA - New Mexico (Northern)

USA - NEW YORK - (Ithaca)

USA - NEW YORK - (Long Island)

USA - NEW YORK - (New York City)

USA - NORTH CAROLINA - (Asheville)

USA - NORTH CAROLINA - (Charlotte)

USA - NORTH CAROLINA - (Greensboro)

USA - Oregon - (Ashland)

USA - Oregon - (Portland)

USA - Pennsylvania - (Harrisburg)

USA - Pennsylvania - (Pittsburgh)

USA - Pennsylvania - (West Chester)

USA - Pennsylvania - (Wilkes - Barre)

USA - SOUTH CAROLINA - (Charleston)

USA - Tennessee - (Memphis)

USA - Texas - (Austin)

USA - Texas - (Dallas / Metroplex)

USA - Texas - (Houston)

USA - Texas - (San Antonio)

USA - Vermont - (Burlington)

USA - Virginia - (Richmond)

USA - Virginia - (Virginia Beach)

USA - WASHINGTON - (Seattle)

USA - Wisconsin - (Milwaukee)

 

Bild anklickem: Holger Strom Webseite
Bild anklickem: Holger Strom Webseite

 

Der Film zeigt eindrucksvolle Beispiele, beginnend beim Einsatz der Atombomben mit ihren schrecklichen Auswirkungen bis hin zu den gesundheitszerstörenden, ja tödlichen Hinterlassenschaften der Atomenergienutzung durch die Energiewirtschaft. Eine besondere Stärke des Films liegt in den Aussagen zahlreicher, unabhängiger Fachleute. Sie erläutern mit ihrem in Jahrzehnten eigener Forschung und Erfahrung gesammelten Wissen Sachverhalte und Zusammenhänge, welche die Befürworter und Nutznießer der Atomtechnologie in Politik, Wirtschaft und Militärwesen gerne im Verborgenen halten wollen.

                                             

Prof. Dr. med. Dr. h. c. Edmund Lengfelder

 

 

Nicht viel anders gehen Politiker/ Abgeordnete des Deutschen Bundestages mit der hoch toxischen riskanten SRM Geoengineering-Forschung um, um diese riskante Forschung durch die Parlamente zu bekommen.

 

Es wird mit gefährlichen Halbwissen und Halbwahrheiten gearbeitet. Sie werden Risiken vertuschen, verdrehen und diese Experimente als das einzig Richtige gegen den drohenden Klimawandel verkaufen. Chemtrails sind Stratosphärische Aerosol Injektionen, die  illegal auf globaler Ebene stattfinden, ohne jeglichen Parlament-Beschluss der beteiligten Regierungen.

 

Geoengineering-Projekte einmal begonnen, sollen für Jahrtausende fortgeführt werden - ohne Unterbrechung (auch bei finanziellen Engpässen oder sonstigen Unruhen) um nicht einen Umkehreffekt  auszulösen.

 

Das erzählt Ihnen die Regierung natürlich nicht, um diese illegale hochgefährliche RM Forschung nur ansatzweise durch die Parlamente zu bringen.

 

Spätestens seit dem Atommüll-Skandal mit dem Forschungs-Projekt ASSE wissen wir Bürger/Innen, wie Politik und Wissenschaft mit Forschungs-Risiken umgehen.. Diese Gefahren und Risiken werden dann den Bürgern einfach verschwiegen. 

 

 


 

 

www.climate-engineering.eu

 

Am 30. September 2012 ist eine neue Internetplattform zu Climate Engineering online gegangen www.climate-engineering.eu  

 

Die Plattform enthält alle neuen Infos -Publikationen, Veranstaltungen etc. zu Climate-Engineering.

 

 

 

 

Gezielte Eingriffe in das Klima?

Eine Bestandsaufnahme der Debatte zu Climate Engineering

Kieler Earth Institute

 

 

Climate Engineering:

Ethische Aspekte

Karlsruher Institut für Technologie

 

 

Climate Engineering:

Chancen und Risiken einer Beeinflussung der Erderwärmung. Naturwissenschaftliche und technische Aspekte

Leibniz-Institut für Troposphärenforschung, Leipzig

 

Climate Engineering:

Wirtschaftliche Aspekte 

Kiel Earth Institute

 

 

Climate Engineering:

Risikowahrnehmung, gesellschaftliche Risikodiskurse und Optionen der Öffentlichkeitsbeteiligung

Dialogik Stuttgart

 

 

Climate Engineering:

Instrumente und Institutionen des internationalen Rechts

Universität Trier

 

 

Climate Engineering:

Internationale Beziehungen und politische Regulierung

Wissenschaftszentrum Berlin für Sozialforschung

 

 

 

Illegale Atmosphären-Experimente finden in Deutschland  seit  2012 „täglich“ am Himmel statt.

 

Chemtrails  -  Verschwörung am Himmel ? Wettermanipulation unter den Augen der Öffentlichkeit

 

Auszug aus dem Buch: 

 

Ich behaupte, dass in etwa 2 bis 3 mal pro Woche, ungefähr ein halbes Dutzend  von frühmorgens bis spätabends in einer Art und Weise Wien überfliegen, die logisch nicht erklärbar ist. Diese Maschinen führen über dem Stadtgebiet manchmal auffällige Steig- und Sinkflüge durch , sie fliegen Bögen und sie drehen abrupt ab. Und sie hinterlassen überall ihre dauerhaft beständigen Kondensstreifen, welche auch ich Chemtrails nenne. Sie verschleiern an manchen Tagen ganz Wien und rundherum am Horizont ist strahlend blauer ...
Hier in diesem Buch  aus dem Jahr 2005 werden die anfänglichen stratosphärischen SRM-Experimente am Himmel beschrieben... inzwischen fliegen die Chemie-Bomber ja 24 h Nonstop, rund um die Uhr.

 

 

 

 

Weather Modification Patente

 

http://weatherpeace.blogspot.de

 

Umfangreiche Liste der Patente

http://www.geoengineeringwatch.org/links-to-geoengineering-patents/

 

 

 

 

 

 

 

 

 

 

Von Pat Mooney - Er ist Gründer und Geschäftsführer der kanadischen Umweltschutzorganisation ETC Group in Ottawa.

 

Im Jahr 1975 tat sich der US-Geheimdienst CIA mit Newsweek zusammen und warnte vor globaler Abkühlung. Im selben Jahr wiesen britische Wissenschaftler die Existenz eines Lochs in der Ozonschicht über der Antarktis nach und die UN-Vollversammlung befasste sich mit identischen Anträgen der Sowjetunion und der USA für ein Verbot von Klimamanipulationen, die militärischen Zwecken dienen. Dreißig Jahre später redeten alle - auch der US-Präsident über globale Erwärmung. 

 

Wissenschaftler warnten, der Temperaturanstieg über dem arktischen Eis  und im sibirischen Permafrost könnte in die Klimakatastrophe führen, und der US-Senat erklärte sich bereit , eine Vorlage zu prüfen, mit der Eingriffe in das Klima erlaubt werden sollten. 

 

Geo-Engineering ist heute Realität. Seit dem Debakel von Kopenhagen bemüht sich die große Politik zusammen mit ein paar Milliardären verstärkt darum, großtechnische Szenarien zu prüfen und die entsprechenden Experimente durchzuführen.

 

Seit Anfang 2009 überbieten sich die Medien mit Geschichten über Geoengineering als "Plan B". Wissenschaftliche Institute und Nobelpreisträger legen Berichte und Anträge vor, um die Politik zur Finanzierung von Feldversuchen zu bewegen. Im britischem Parlament wie im US-Kongress haben die Anhörungen schon begonnen. Anfang 2010 berichteten Journalisten, Bill Gates investiere privat in Geoengineering-Forschung und werde bei Geoengineering-Patenten zur Senkung der Meerestemperatur und zur Steuerung von Hurrikanen sogar als Miterfinder genannt. Unterdesssen hat Sir Richard Branson - Gründer und Besitzer der Fluglinie Virgin Air - verkündet, er habe eine Kommandozentrale für den Klimakrieg eingerichtet und sei für alle klimatechnischen Optionen offen. Zuvor hatte er 25 Millionen Dollar für eine Technik ausgesetzt, mit der sich die Stratosphäre reinigen lässt. 

 

Einige der reichsten Männer der Welt (z.B. Richard Branson und Bill Gates ) und die mächtigsten Konzerne (z.B. Shell , Boeing ) werden immer beteiligt.

 

Geoengineering Karte - ETC Group

 

ETC Group veröffentlicht eine Weltkarte über Geoengineering-Experimente, die groß angelegte Manipulation des Klimas unserer Erde.  Zwar gibt es keine vollständige Aufzeichnung von Wetter und Klima-Projekten in Dutzenden von Ländern, diese Karte ist aber der erste Versuch, um den expandierenden Umfang der Forschungs-Experimente zu dokumentieren. 

 

Fast 300 Geo-Engineering-Projekte / Experimente sind auf der Karte vertreten, die zu den verschiedenen Arten von Klima-Änderungs-Technologien gehören.

Einfach anklicken und vergrößern..
Einfach anklicken und vergrößern..

 

Aus der Sicht der reichen Länder (und ihrer Unternehmen) erscheint Geoengineering einfach perfekt. Es ist machbar. Es ist (relativ) billig. Und es erlaubt der Industrie, den Umbau unserer Wirtschaft und Produktionsweise für überflüssig zu erklären.

 

Das wichtigste aber ist: Geoengineering braucht keinerlei internationale Übereinkunft. Länder, Unternehmen, ja sogar superreiche Geo-Piraten können es auf eigene Faust durchziehen. Eine bescheidene >Koalition der Willigen< genügt vollauf, und eine Handvoll Akteure kann den Planeten nach Belieben umbauen.

 

Damit wir es nicht vergessen:

 

Seit 1945  führten die USA, die UdSSR, England, Frankreich und später auch China mehr als 2000 Atomtests durch – über und unter der Erde und ohne Rücksicht auf die zu erwartenden Auswirkungen auf Gesundheit und Umwelt weltweit. Niemand wurde um Erlaubnis gefragt. Wenn das Weltklima zu kippen droht, werden sie da wirklich vor einseitigen Entscheidungen zurückschrecken? 

 

 

 

Warum ist Geo-Engineering nicht akzeptabel..?

 

SRM Geoengineering kann nicht im Labor getestet werden: Es ist keine experimentelle Labor-Phase möglich, um einen spürbaren Einfluss auf das Klima zu haben. Geo-Engineering muss massiv eingesetzt werden.

 

Experimente oder Feldversuche entsprechen tatsächlich den Einsatz in der realen Welt, da kleine Tests nicht die Daten auf Klimaeffekte liefern.

 

Auswirkungen für die Menschen und die biologische Vielfalt würden wahrscheinlich sofort massiv und möglicherweise irreversibel sein.

 

 

 

 

Hände weg von Mutter Erde (HOME) ist eine weltweite Kampagne, um unserem kostbaren Planeten Erde, gegen die Bedrohung durch Geo-Engineering-Experimente zu verteidigen. Gehen Sie mit uns, um eine klare Botschaft an die Geo-Ingenieure und die Regierungen weltweit zu senden, dass unsere Erde kein ein Labor ist.

 

x

Liste der (SRM) Geoengineering-Forschung

Hier anklicken:
Hier anklicken:

http://www.ww.w.givewell.org/files/shallow/geoengineering/Geoengineering research funding 10-9-13.xls

 

Weltweite Liste der Geoengineering-Forschung SRM Forschungs Länder: 

 

Großbritannien, Vereinigte Staaten Amerika, Deutschland, Frankreich, Norwegen, Finnland, Österreich und Japan.

 

 

In "NEXT BANG!" beschreibt Pat Money neue Risikotechnologien, die heute von Wissenschaftlern, Politikern und mächtigen Finanziers aktiv für den kommerziellen Einsatz vorbereitet werden:

 

Geo-Engineering, Nanotechnologie, oder die künstliche >Verbesserung< des menschlichen Körpers.

 

"Die  Brisanz des Buches liegt darin, dass es zeigt, wie die Technologien, die unsere Zukunft bestimmen könnten, heute zum großflächigen Einsatz vorbereitet werden – und das weitgehend unbemerkt von der Öffentlichkeit. Atomkraft, toxische Chemikalien oder genmanipulierte Organismen konnten deshalb nicht durch demokratische Entscheidungen verhindert werden, weil hinter ihnen bereits eine zu große ökonomische und politische Macht stand, als ihre Risiken vielen Menschen erst bewusst wurden.

 

Deshalb dürfen wir die Diskussion über Geoengineering, Nanotechnologie, synthetische Biologie  und die anderen neuen Risikotechnologien nicht länger den selbsternannten Experten überlassen. Die Entscheidungen über ihren künftigen Einsatz fallen jetzt - es ist eine Frage der Demokratie, dass wir alle dabei mitreden."

 

Ole von UexküllDirektor der Right Livelihood Award Foundation, die den Alternativen Nobelpreis vergibt

 

 

Vanishing of the Bees - No Bees, No Food !

 

Verschwinden der Bienen  - Keine Bienen, kein Essen !

 

http://www.beeheroic.com/geoengineering-and-environment

http://www.beeheroic.com/resources

 

 

 

 

 

Solar Radiation Management = SRM

Es ist zu beachten, dass SRM Maßnahmen zwar auf kurzer Zeitskala wirksam werden können, die Dauer ihres Einsatzes aber an der Lebensdauer des CO-2 gebunden ist, welches mehrere Tausend Jahre beträgt.

 

CDR- Maßnahmen hingegen müssten über einen sehr langen Zeitraum (viele Jahrzehnte) aufgebaut werden, ihr Einsatz könnte allerdings beendet werden, sobald die CO2 Konzentration wieder auf ein akzeptables Niveau gesenkt ist. Entsprechende Anstrengungen vorausgesetzt, könnte dies bereits nach einigen Hundert Jahren erreicht sein.

 

CDR Maßnahmen: sind relativ teuer und arbeiten viel zu langsam. Bis sie wirken würden, vergehen viele Jahrzehnte

 

Solar Radiation Management SRM Maßnahmen: billig.. und schnell..

 

 

Quelle: Institut für Technikfolgenabschätzung

 

 

 

 

 

Solar Radiation Management = SRM

 

Ironie der Geoengineering Forschung:

 

Ein früherer SRM Abbruch hätte einen abrupten sehr heftigen Klimawandel zur Folge, den wir in dieser Schnelligkeit und heftigen Form nie ohne diese SRM Maßnahmen gehabt hätten. 

 

Das, was Regierungen mit den globalen GEO-ENGINEERING-INTERVENTIONEN verhindern wollten, genau das wären dann die globalen Folgeschäden bei der frühzeitigen Beendigung der SRM Forschungs-Interventionen.

 

Wenn sie diese hoch giftigen SAI - Programme  aus wichtigen Gründen vorher abbrechen müssten, droht uns ein abrupter Klimawandel, der ohne diese GE-Programme nie dagewesen wäre. 

 

Das bezeichne ich doch mal  als wahre  reale Satire..